Câu hỏi

Cho mạch điện như hình vẽ, hai cuộn dây thuần cảm có độ tự cảm thay đổi, biết R2 = 5R1. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều \(u = U\sqrt 2 cos\omega t\) (Với U và ω không đổi). Điều chỉnh độ tự cảm của các cuộn dây (nhưng luôn thỏa mãn L2 = 0,8L1) sao cho độ lệch pha giữa điện áp hai đầu đoạn mạch AM và MB lớn nhất, thì hệ số công suất của đoạn mạch khi đó bằng

     

  • A 0,8  
  • B 0,6
  • C \(\frac{8}{{\sqrt {73} }}\)
  • D \(\frac{6}{{\sqrt {73} }}\)

Phương pháp giải:

- Chuẩn hoá số liệu

- Công thức tính độ lệch pha giữa u và i : \(\tan \varphi  = \frac{{{Z_L} - {Z_C}}}{R}\)

- Hệ số công suất : \(\cos \varphi  = \frac{R}{Z}\)

- Công thức lượng giác : \(\tan \left( {{\varphi _1} - {\varphi _2}} \right) = \frac{{\tan {\varphi _1} - \tan {\varphi _2}}}{{1 + \tan {\varphi _1}.\tan {\varphi _2}}}\)

- Bất đẳng thức Cô – si : \(a + b \ge 2\sqrt {ab} \)

Dấu ‘’=’’ xảy ra khi a = b

Lời giải chi tiết:

Ta có: \({L_2} = 0,8{L_1} \Rightarrow {Z_{L2}} = 0,8{Z_{L1}}\)

Đặt: \(\left\{ \begin{array}{l}{Z_{L1}} = x\\{Z_{L2}} = 0,8x\\{R_1} = 1\\{R_2} = 5\end{array} \right.\)

Ta có:

\(\begin{array}{l}\tan \Delta \varphi  = \tan \left( {{\varphi _{AM}} - {\varphi _{MB}}} \right) = \frac{{\tan {\varphi _{AM}} - \tan {\varphi _{MB}}}}{{1 + \tan {\varphi _{AM}}.\tan {\varphi _{MB}}}} = \frac{{\frac{{{Z_{L1}}}}{{{R_1}}} - \frac{{{Z_{L2}}}}{{{R_2}}}}}{{1 + \frac{{{Z_{L1}}}}{{{R_1}}}.\frac{{{Z_{L2}}}}{{{R_2}}}}}\\\tan \Delta \varphi  = \frac{{\frac{x}{1} - \frac{{0,8x}}{5}}}{{1 + \frac{x}{1} - \frac{{0,8x}}{5}}} = \frac{{0,84x}}{{1 + 0,16{x^2}}} = \frac{{0,84}}{{\frac{1}{x} + 0,16x}}\\ \Rightarrow {\left( {\tan \Delta \varphi } \right)_{\max }} \Leftrightarrow {\left( {\frac{1}{x} + 0,16x} \right)_{\min }}\end{array}\)

Áp dụng bất đẳng thức Cô – si ta có : \({\left( {\frac{1}{x} + 0,16x} \right)_{\min }} \Leftrightarrow \frac{1}{x} = 0,16x \Rightarrow x = 2,5\)

→ Hệ số công suất của đoạn mạch khi đó :

\(\cos \varphi  = \frac{{{R_1} + {R_2}}}{{\sqrt {{{\left( {{R_1} + {R_2}} \right)}^2} + {{\left( {{Z_1} + {Z_2}} \right)}^2}} }} = \frac{{1 + 5}}{{\sqrt {{{\left( {1 + 5} \right)}^2} + {{\left( {2,5 + 0,8.2,5} \right)}^2}} }} = 0,8\)  

Chọn A


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay