Câu hỏi

Vật dao động điều hòa theo phương trình\(x = 6.\cos \left( {20t - \frac{{2\pi }}{3}} \right)cm\) cm. Tốc độ của vật sau khi vật đi quãng đường 6cm kể từ thời điểm ban đầu là

  • A 20 cm/s
  • B 60 cm/s
  • C \(60\sqrt 3 cm/s\)
  • D 80 cm/s

Phương pháp giải:

Phương trình dao động:  

\(x = 6.\cos \left( {20t - \frac{{2\pi }}{3}} \right)cm\)

Hệ thức độc lập theo thời gian của x và v:   

\({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\)

Lời giải chi tiết:

Phương trình dao động:

\(x = 6.\cos \left( {20t - \frac{{2\pi }}{3}} \right)cm\)

Vị trí ban đầu là  

\({x_0} = 6.\cos \frac{{2\pi }}{3} = - 3cm\)

Vận tốc ban đầu  

\({v_0} = - 6.20.\sin \frac{{2\pi }}{3} = - 60\sqrt 3 cm/s < 0\)

Vậy ban đầu vật ở vị trí x = -3cm và đang chuyển động theo chiều âm

 

Vậy sau khi chuyển động được quãng đường 6cm, vật quay lại vị trí x = -3 cm, và chuyển động  nên vận tốc lúc đó là

\(60\sqrt 3 cm/s\)

 

Chọn C


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay