Câu hỏi
Cho hình chóp \(S.ABC\). \(SA \bot \left( {ABC} \right),\,\,SA = \dfrac{{3a}}{2}\). \(\Delta ABC\) là tam giác đều cạnh \(a\). Khi đó, góc tạo bởi hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là:
- A \({90^0}\)
- B \({60^0}\)
- C \({30^0}\)
- D \({150^0}\)
Phương pháp giải:
Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng lần lượt thuộc 2 mặt phẳng và vuông góc với giao tuyến.
Lời giải chi tiết:
Gọi \(M\) là trung điểm của \(BC\) ta có \(AM \bot BC\) và \(AM = \dfrac{{a\sqrt 3 }}{2}\).
\(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).
Ta có:
\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SM \bot BC\\\left( {ABC} \right) \supset AM \bot BC\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SM;AM} \right) = \angle SMA\).
Trong tam giác vuông \(SAM\) có:
\(\tan \angle SMA = \dfrac{{SA}}{{AM}} = \dfrac{{\dfrac{{3a}}{2}}}{{\dfrac{{a\sqrt 3 }}{2}}} = \sqrt 3 \Rightarrow \angle SMA = {60^0}\).
Vậy \(\angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = {60^0}\).
Chọn B.