Môn Toán - Lớp 12
40 bài tập trắc nghiệm sự đồng biến nghịch biến của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Tìm tất cả các giá trị của \(m\) để hàm số \(y=\dfrac{x-1}{x-m}\) nghịch biến trên khoảng \(\left( -\infty ;3 \right)\).
- A \(m\ge 3\)
- B \(m>3\)
- C \(m \ge 1\)
- D \(m > 1\)
Phương pháp giải:
- Hàm số nghịch biến trên \(\left( -\infty ;3 \right)\Leftrightarrow y'\le 0\,\,\forall x\in \left( -\infty ;3 \right)\).
Lời giải chi tiết:
Khi \(m=1\) thì \(y = 1\) là hàm hằng trên \(\mathbb{R}\) nên \(m = 1\) không thỏa mãn.
Khi \(m\ne 1\) thì hàm số có \(y' = \dfrac{{ - m + 1}}{{{{(x - m)}^2}}}\)
Để hàm số nghịch biến trên khoảng \(\left( { - \infty ;3} \right)\) thì\(\left\{ {\begin{array}{*{20}{c}}{x \ne m}\\{ - m + 1 < 0}\end{array}} \right.\,\,\,\,\forall \,x \in \left( { - \infty ;3} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge 3}\\{m > 1}\end{array}} \right. \Leftrightarrow m \ge 3\)
Chọn A.