Câu hỏi

Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có tất cả các đường tiệm cận là: 

  • A \(x =  \pm 1\)
  • B \(x = 1;\,y = 0\)
  • C \(y = 1;\,x =  \pm 1\)
  • D \(y = 0;\,x =  \pm 1\)

Phương pháp giải:

Đường thẳng \(x=a\) được gọi là TCĐ của đồ thị hàm số  \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to a} f\left( x \right) =  \pm \infty .\)

Đường thẳng \(y=b\) được gọi là TCN của đồ thị hàm số  \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) =  b .\)

Lời giải chi tiết:

Ta có: \(y = \dfrac{{2x + 2}}{{{x^2} - 1}} = \dfrac{{2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{2}{{x - 1}}.\)

Cho mẫu bằng 0 ta được: \(x = 1\)\( \Rightarrow x = 1\) là TCĐ của đồ thị hàm số.

Sử dụng pp bấm máy tính ta được: \(x \to  \pm \infty :\,y = 0\) \( \Rightarrow y = 0\) là TCN của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận: \(x = 1\) và \(y = 0\).

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay