Môn Toán - Lớp 12
40 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ nhận biết, thông hiểu
Câu hỏi
Đồ thị hàm số \(y = \dfrac{{2x + 2}}{{{x^2} - 1}}\) có tất cả các đường tiệm cận là:
- A \(x = \pm 1\)
- B \(x = 1;\,y = 0\)
- C \(y = 1;\,x = \pm 1\)
- D \(y = 0;\,x = \pm 1\)
Phương pháp giải:
Đường thẳng \(x=a\) được gọi là TCĐ của đồ thị hàm số \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to a} f\left( x \right) = \pm \infty .\)
Đường thẳng \(y=b\) được gọi là TCN của đồ thị hàm số \(y=f(x) \Leftrightarrow \mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = b .\)
Lời giải chi tiết:
Ta có: \(y = \dfrac{{2x + 2}}{{{x^2} - 1}} = \dfrac{{2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{2}{{x - 1}}.\)
Cho mẫu bằng 0 ta được: \(x = 1\)\( \Rightarrow x = 1\) là TCĐ của đồ thị hàm số.
Sử dụng pp bấm máy tính ta được: \(x \to \pm \infty :\,y = 0\) \( \Rightarrow y = 0\) là TCN của đồ thị hàm số.
Vậy đồ thị hàm số có 2 đường tiệm cận: \(x = 1\) và \(y = 0\).
Chọn B.