1. Lập phương trình đường thẳng đi qua một điểm và biết vecto pháp tuyến
Đường thẳng \(\Delta \) đi qua \({M_0}({x_0};{y_0})\) và nhận \(\overrightarrow n = (a;b)\) làm vecto pháp tuyến có phương trình là \(a(x - {x_0}) + b(y - {y_0}) = 0\).
Ví dụ minh hoạ:
Lập phương trình đường thẳng \(\Delta \) đi qua M(-2;-3) và có \(\overrightarrow n = (2;5)\) là vecto pháp tuyến.
Giải:
Phương trình \(\Delta \) là \(2(x + 2) + 5(y + 3) = 0 \Leftrightarrow 2x + 5y + 19 = 0\).
2. Lập phương trình đường thẳng đi qua một điểm và biết vecto chỉ phương
Phương trình đường thẳng \(\Delta \) đi qua \({M_0}({x_0};{y_0})\) và nhận \(\overrightarrow u = (a;b)\) \((\overrightarrow u \ne \overrightarrow 0 )\) làm vecto chỉ phương là \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\end{array} \right.\) (t là tham số).
Nếu \(a \ne 0\) và \(b \ne 0\) thì ta còn có thể viết phương trình của đường thẳng \(\Delta \) ở dạng: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b}\).
Ví dụ minh hoạ:
Lập phương trình đường thẳng \(\Delta \) đi qua M(3;-5) và có \(\overrightarrow u = (2; - 4)\) là vecto chỉ phương.
Giải:
Phương trình \(\Delta \) là \(\frac{{x - 3}}{2} = \frac{{y + 5}}{{ - 4}} \Leftrightarrow 4x + 2y - 2 = 0 \Leftrightarrow 2x + y - 1 = 0\).
3. Lập phương trình đường thẳng đi qua hai điểm
Đường thẳng \(\Delta \) đi qua \(A({x_A};{y_A})\), \(B({x_B};{y_B})\) nên nhận vecto \(\overrightarrow {AB} = ({x_B} - {x_A};{y_B} - {y_A})\) làm vecto chỉ phương. Phương trình tham số của \(\Delta \) là:
\(\left\{ \begin{array}{l}x = {x_A} + ({x_B} - {x_A})t\\y = {y_A} + ({y_B} - {y_A})t\end{array} \right.\) (t là tham số).
Nếu \({x_B} - {x_A} \ne 0\) và \({y_B} - {y_A} \ne 0\) thì ta có thể viết phương trình đường thẳng \(\Delta \) dưới dạng:
\(\frac{{x - {x_A}}}{{{x_B} - {x_A}}} = \frac{{y - {y_A}}}{{{y_B} - {y_A}}}\).
Ví dụ minh hoạ:
Lập phương trình đường thẳng \(\Delta \) đi qua A(-3;4) và B(1;-1).
Giải:
Phương trình \(\Delta \) là \(\frac{{x + 3}}{{1 - ( - 3)}} = \frac{{y - 4}}{{ - 1 - 4}} \Leftrightarrow \frac{{x + 3}}{4} = \frac{{y - 4}}{{ - 5}} \Leftrightarrow 5x + 4y - 1 = 0\).
Phương trình đường thẳng - Từ điển môn Toán 10 


