Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng
\(a{x^2} + bx + c = 0\),
trong đó x là ẩn; a, b, c là những số cho trước gọi là hệ số và \(a \ne 0\).
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Tính biệt thức \(\Delta = {b^2} - 4ac\).
- Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).
- Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\).
- Nếu \(\Delta < 0\) thì phương trình vô nghiệm.
Ví dụ: Giải phương trình \({x^2} - 7x - 8 = 0\).
Ta có: \(a = 1,b = - 7,c = - 8\).
\(\Delta = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4.1.\left( { - 8} \right) = 81 > 0\).
Vậy phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {81} }}{{2.1}} = 8;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {81} }}{{2.1}} = - 1\).
Chú ý: Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có a và c trái dấu, tức là \(ac < 0\), thì \(\Delta = {b^2} - 4ac > 0\). Khi đó, phương trình có hai nghiệm phân biệt.
Ví dụ: Phương trình \({x^2} + 3572x - 3573 = 0\) có \(a = 1 > 0,c = - 3573 < 0\), suy ra a và c trái dấu.
Do đó phương trình có hai nghiệm phân biệt.
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\).
- Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a}\).
- Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{{b'}}{a}\).
- Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Ví dụ: Giải phương trình \(7{x^2} - 12x + 5 = 0\).
Ta có: \(a = 7,b' = - 6,c = 5\).
\(\Delta ' = b{'^2} - ac = {\left( { - 6} \right)^2} - 7.5 = 1 > 0\).
Vậy phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{ - \left( { - 6} \right) + 1}}{7} = 1;{x_2} = \frac{{ - \left( { - 6} \right) - 1}}{7} = \frac{5}{7}\).
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Bước 1: Xác định các hệ số a, b, c và tính biệt thức \(\Delta = {b^2} - 4ac\).
Bước 2: Kết luận
- Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).
- Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\).
- Nếu \(\Delta < 0\) thì phương trình vô nghiệm.
Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\)
Bước 1: Xác định các hệ số a, b’, c với \(b = 2b'\) và tính biệt thức \(\Delta ' = b{'^2} - ac\).
Bước 2: Kết luận
- Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a}\).
- Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{{b'}}{a}\).
- Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Ví dụ: Giải phương trình \({x^2} - 7x - 8 = 0\).
Ta có: \(a = 1,b = - 7,c = - 8\).
\(\Delta = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4.1.\left( { - 8} \right) = 81 > 0\).
Vậy phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {81} }}{{2.1}} = 8;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {81} }}{{2.1}} = - 1\).
Các bài khác cùng chuyên mục