Đề bài

Với mỗi số \(k\), đặt \({I_k} = \int\limits_{ - \sqrt k }^{\sqrt k } {\sqrt {k - {x^2}} dx} \). Khi đó \({I_1} + {I_2} + {I_3} + ... + {I_{12}}\) bằng:

  • A.
    \(78\pi \)
  • B.
    \(650\pi \)
  • C.
    \(325\pi \)
  • D.
    \(39\pi \)
Phương pháp giải

- Đặt ẩn phụ \(x = \sqrt k \sin t\).

- Sử dụng công thức hạ bậc \({\cos ^2}t = \dfrac{{1 + \cos 2t}}{2}\).

- Tính tích phân.

- Sử dụng công thức tính tổng \(1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\).

Lời giải của GV Loigiaihay.com

Đặt \(x = \sqrt k \sin t\) \( \Rightarrow dx = \sqrt k \cos tdt\).

Đổi cận: \(\left\{ \begin{array}{l}x =  - \sqrt k  \Leftrightarrow \sin t =  - 1 \Leftrightarrow t =  - \dfrac{\pi }{2}\\x = \sqrt k  \Leftrightarrow \sin t = 1 \Leftrightarrow t = \dfrac{\pi }{2}\end{array} \right.\).

Khi đó ta có

\(\begin{array}{l}{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sqrt {k - k{{\sin }^2}t} .\sqrt k \cos tdt} \\{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {k{{\cos }^2}tdt} \\{I_k} = k\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 + \cos 2t}}{2}dt} \\{I_k} = \dfrac{k}{2}\left. {\left( {t + \dfrac{1}{2}\sin 2t} \right)} \right|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}}\\{I_k} = \dfrac{k}{2}\left( {\dfrac{\pi }{2} + \dfrac{1}{2}\sin \pi  + \dfrac{\pi }{2} - \dfrac{1}{2}\sin \left( { - \pi } \right)} \right)\\{I_k} = \dfrac{k}{2}.\pi  = \dfrac{{k\pi }}{2}\end{array}\)

\(\begin{array}{l} \Rightarrow {I_1} + {I_2} + {I_3} + ... + {I_{12}}\\ = \dfrac{\pi }{2}\left( {1 + 2 + 3 + ... + 12} \right)\\ = \dfrac{\pi }{2}.\dfrac{{12.13}}{2} = 39\pi \end{array}\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Hàm số \(y = f\left( x \right)\) có nguyên hàm trên $\left( {a;b} \right)$  đồng thời thỏa mãn \(f\left( a \right) = f\left( b \right)\). Lựa chọn phương án đúng:

Xem lời giải >>
Bài 2 :

Cho hàm số $f\left( x \right)$liên tục trên $R$  và $\int\limits_{ - 2}^4 {f\left( x \right)} dx{\rm{ = 2}}$ . Mệnh đề nào sau đây là sai?

Xem lời giải >>
Bài 3 :

Cho \(y = f\left( x \right)\) là hàm số lẻ và liên tục trên \(\left[ { - a;a} \right]\). Chọn kết luận đúng:

Xem lời giải >>
Bài 4 :

Cho \(\int_0^4 {f(x)dx}  =  - 1\), tính $I = \int_0^1 {f(4x)} dx$:

Xem lời giải >>
Bài 5 :

Tính tích phân \(I = \int\limits_0^\pi  {{{\cos }^3}x\sin xdx} \)

Xem lời giải >>
Bài 6 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?

Xem lời giải >>
Bài 7 :

Tính tích phân \(I = \int\limits_{\ln 2}^{\ln 5} {\dfrac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx} \) bằng phương pháp đổi biến số \(u = \sqrt {{e^x} - 1} \). Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải >>
Bài 8 :

Biết rằng \(I = \int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}dx = \ln a} \) với \(a \in R\). Khi đó giá trị của $a$ bằng:

Xem lời giải >>
Bài 9 :

Cho \(2\sqrt 3 m - \int\limits_0^1 {\dfrac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx}  = 0\). Khi đó \(144{m^2} - 1\) bằng:

Xem lời giải >>
Bài 10 :

Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:

Xem lời giải >>
Bài 11 :

Cho \(I = \int\limits_1^e {\dfrac{{\sqrt {1 + 3\ln x} }}{x}dx} \) và \(t = \sqrt {1 + 3\ln x} \) . Chọn khẳng định sai trong các khẳng định sau:

Xem lời giải >>
Bài 12 :

Biến đổi \(\int\limits_1^e {\dfrac{{\ln x}}{{x{{\left( {\ln x + 2} \right)}^2}}}dx} \) thành \(\int\limits_2^3 {f\left( t \right)dt} \) với \(t = \ln x + 2\). Khi đó \(f\left( t \right)\) là hàm nào trong các hàm số sau?

Xem lời giải >>
Bài 13 :

Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 14 :

Nếu tích phân \(I = \int\limits_0^{\dfrac{\pi }{6}} {{{\sin }^n}x\cos xdx}  = \dfrac{1}{{64}}\) thì $n$ bằng bao nhiêu?

Xem lời giải >>
Bài 15 :

Đổi biến \(x = 4\sin t\) của tích phân \(I = \int\limits_0^{\sqrt 8 } {\sqrt {16 - {x^2}} dx} \) ta được:

Xem lời giải >>
Bài 16 :

Cho tích phân \(I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {4 - {x^2}} }}} \). Bằng phương pháp đổi biến thích hợp ta đưa được tích phân đã cho về dạng:

Xem lời giải >>
Bài 17 :

Tìm \(a\) biết \(I = \int\limits_{ - 1}^2 {\dfrac{{{e^x}dx}}{{2 + {e^x}}}}  = \ln \dfrac{{ae + {e^3}}}{{ae + b}}\) với $a, b$ là các số nguyên dương.

Xem lời giải >>
Bài 18 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{e^{{{\sin }^2}x}}\sin x{{\cos }^3}x} dx\). Nếu đổi biến số \(t = {\sin ^2}x\) thì:

Xem lời giải >>
Bài 19 :

Kết quả của tích phân \(I = \int\limits_1^2 {\dfrac{{dx}}{{x\sqrt {1 + {x^3}} }}} \) có dạng \(I = a\ln 2 + b\ln \left( {\sqrt 2  - 1} \right) + c\) với \(a,b,c \in Q\). Khi đó giá trị của $a$ bằng:

Xem lời giải >>
Bài 20 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{6\tan x}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \). Giả sử đặt \(u = \sqrt {3\tan x + 1} \) thì ta được:

Xem lời giải >>