Với mỗi số \(k\), đặt \({I_k} = \int\limits_{ - \sqrt k }^{\sqrt k } {\sqrt {k - {x^2}} dx} \). Khi đó \({I_1} + {I_2} + {I_3} + ... + {I_{12}}\) bằng:
-
A.
\(78\pi \)
-
B.
\(650\pi \)
-
C.
\(325\pi \)
-
D.
\(39\pi \)
- Đặt ẩn phụ \(x = \sqrt k \sin t\).
- Sử dụng công thức hạ bậc \({\cos ^2}t = \dfrac{{1 + \cos 2t}}{2}\).
- Tính tích phân.
- Sử dụng công thức tính tổng \(1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\).
Đặt \(x = \sqrt k \sin t\) \( \Rightarrow dx = \sqrt k \cos tdt\).
Đổi cận: \(\left\{ \begin{array}{l}x = - \sqrt k \Leftrightarrow \sin t = - 1 \Leftrightarrow t = - \dfrac{\pi }{2}\\x = \sqrt k \Leftrightarrow \sin t = 1 \Leftrightarrow t = \dfrac{\pi }{2}\end{array} \right.\).
Khi đó ta có
\(\begin{array}{l}{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sqrt {k - k{{\sin }^2}t} .\sqrt k \cos tdt} \\{I_k} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {k{{\cos }^2}tdt} \\{I_k} = k\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\dfrac{{1 + \cos 2t}}{2}dt} \\{I_k} = \dfrac{k}{2}\left. {\left( {t + \dfrac{1}{2}\sin 2t} \right)} \right|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}}\\{I_k} = \dfrac{k}{2}\left( {\dfrac{\pi }{2} + \dfrac{1}{2}\sin \pi + \dfrac{\pi }{2} - \dfrac{1}{2}\sin \left( { - \pi } \right)} \right)\\{I_k} = \dfrac{k}{2}.\pi = \dfrac{{k\pi }}{2}\end{array}\)
\(\begin{array}{l} \Rightarrow {I_1} + {I_2} + {I_3} + ... + {I_{12}}\\ = \dfrac{\pi }{2}\left( {1 + 2 + 3 + ... + 12} \right)\\ = \dfrac{\pi }{2}.\dfrac{{12.13}}{2} = 39\pi \end{array}\)
Đáp án : D
Các bài tập cùng chuyên đề
Hàm số \(y = f\left( x \right)\) có nguyên hàm trên $\left( {a;b} \right)$ đồng thời thỏa mãn \(f\left( a \right) = f\left( b \right)\). Lựa chọn phương án đúng:
Cho hàm số $f\left( x \right)$liên tục trên $R$ và $\int\limits_{ - 2}^4 {f\left( x \right)} dx{\rm{ = 2}}$ . Mệnh đề nào sau đây là sai?
Cho \(y = f\left( x \right)\) là hàm số lẻ và liên tục trên \(\left[ { - a;a} \right]\). Chọn kết luận đúng:
Cho \(\int_0^4 {f(x)dx} = - 1\), tính $I = \int_0^1 {f(4x)} dx$:
Tính tích phân \(I = \int\limits_0^\pi {{{\cos }^3}x\sin xdx} \)
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?
Tính tích phân \(I = \int\limits_{\ln 2}^{\ln 5} {\dfrac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx} \) bằng phương pháp đổi biến số \(u = \sqrt {{e^x} - 1} \). Khẳng định nào sau đây là khẳng định đúng?
Biết rằng \(I = \int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}dx = \ln a} \) với \(a \in R\). Khi đó giá trị của $a$ bằng:
Cho \(2\sqrt 3 m - \int\limits_0^1 {\dfrac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx} = 0\). Khi đó \(144{m^2} - 1\) bằng:
Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:
Cho \(I = \int\limits_1^e {\dfrac{{\sqrt {1 + 3\ln x} }}{x}dx} \) và \(t = \sqrt {1 + 3\ln x} \) . Chọn khẳng định sai trong các khẳng định sau:
Biến đổi \(\int\limits_1^e {\dfrac{{\ln x}}{{x{{\left( {\ln x + 2} \right)}^2}}}dx} \) thành \(\int\limits_2^3 {f\left( t \right)dt} \) với \(t = \ln x + 2\). Khi đó \(f\left( t \right)\) là hàm nào trong các hàm số sau?
Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?
Nếu tích phân \(I = \int\limits_0^{\dfrac{\pi }{6}} {{{\sin }^n}x\cos xdx} = \dfrac{1}{{64}}\) thì $n$ bằng bao nhiêu?
Đổi biến \(x = 4\sin t\) của tích phân \(I = \int\limits_0^{\sqrt 8 } {\sqrt {16 - {x^2}} dx} \) ta được:
Cho tích phân \(I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {4 - {x^2}} }}} \). Bằng phương pháp đổi biến thích hợp ta đưa được tích phân đã cho về dạng:
Tìm \(a\) biết \(I = \int\limits_{ - 1}^2 {\dfrac{{{e^x}dx}}{{2 + {e^x}}}} = \ln \dfrac{{ae + {e^3}}}{{ae + b}}\) với $a, b$ là các số nguyên dương.
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{e^{{{\sin }^2}x}}\sin x{{\cos }^3}x} dx\). Nếu đổi biến số \(t = {\sin ^2}x\) thì:
Kết quả của tích phân \(I = \int\limits_1^2 {\dfrac{{dx}}{{x\sqrt {1 + {x^3}} }}} \) có dạng \(I = a\ln 2 + b\ln \left( {\sqrt 2 - 1} \right) + c\) với \(a,b,c \in Q\). Khi đó giá trị của $a$ bằng:
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{6\tan x}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \). Giả sử đặt \(u = \sqrt {3\tan x + 1} \) thì ta được: