Đề bài

Cho hàm số $f\left( x \right)$liên tục trên $R$  và $\int\limits_{ - 2}^4 {f\left( x \right)} dx{\rm{ = 2}}$ . Mệnh đề nào sau đây là sai?

  • A.

    $\int\limits_{ - 1}^2 {f\left( {2x} \right)} d{\rm{x  =  2}}$

  • B.

    $\int\limits_{ - 3}^3 {f\left( {x + 1} \right)} d{\rm{x  =  2}}$

  • C.

    $\int\limits_{ - 1}^2 {f\left( {2x} \right)} d{\rm{x  =  1}}$

  • D.

    $\int\limits_0^6 {\dfrac{1}{2}f\left( {x - 2} \right)} d{\rm{x  =  1}}$

Phương pháp giải

Sử dụng phương pháp đổi biến số để tích tích phân ở các đáp án.

Lời giải của GV Loigiaihay.com

Dựa vào các đáp án, ta có nhận xét sau:

$\begin{array}{l}\int\limits_{ - 1}^2 {f(2x)dx}  = \dfrac{1}{2}\int\limits_{ - 1}^2 {f(2x)d(2x)}  = \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx = 1} \\\int\limits_{ - 3}^3 {f(x + 1)dx}  = \int\limits_{ - 3}^3 {f(x + 1)d(x + 1)}  = \int\limits_{ - 2}^4 {f(x)dx = 2} \\\int\limits_0^6 {\dfrac{1}{2}f(x - 2)dx}  = \int\limits_0^6 {\dfrac{1}{2}f(x - 2)d(x - 2)}  = \dfrac{1}{2}\int\limits_{ - 2}^4 {f(x)dx = 1} \end{array}$

Do đó các đáp án B, C, D đều đúng, đáp án A sai.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Hàm số \(y = f\left( x \right)\) có nguyên hàm trên $\left( {a;b} \right)$  đồng thời thỏa mãn \(f\left( a \right) = f\left( b \right)\). Lựa chọn phương án đúng:

Xem lời giải >>
Bài 2 :

Cho \(y = f\left( x \right)\) là hàm số lẻ và liên tục trên \(\left[ { - a;a} \right]\). Chọn kết luận đúng:

Xem lời giải >>
Bài 3 :

Cho \(\int_0^4 {f(x)dx}  =  - 1\), tính $I = \int_0^1 {f(4x)} dx$:

Xem lời giải >>
Bài 4 :

Tính tích phân \(I = \int\limits_0^\pi  {{{\cos }^3}x\sin xdx} \)

Xem lời giải >>
Bài 5 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?

Xem lời giải >>
Bài 6 :

Tính tích phân \(I = \int\limits_{\ln 2}^{\ln 5} {\dfrac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx} \) bằng phương pháp đổi biến số \(u = \sqrt {{e^x} - 1} \). Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải >>
Bài 7 :

Biết rằng \(I = \int\limits_0^1 {\dfrac{x}{{{x^2} + 1}}dx = \ln a} \) với \(a \in R\). Khi đó giá trị của $a$ bằng:

Xem lời giải >>
Bài 8 :

Cho \(2\sqrt 3 m - \int\limits_0^1 {\dfrac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx}  = 0\). Khi đó \(144{m^2} - 1\) bằng:

Xem lời giải >>
Bài 9 :

Đổi biến $u = \ln x$ thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}dx} \) thành:

Xem lời giải >>
Bài 10 :

Cho \(I = \int\limits_1^e {\dfrac{{\sqrt {1 + 3\ln x} }}{x}dx} \) và \(t = \sqrt {1 + 3\ln x} \) . Chọn khẳng định sai trong các khẳng định sau:

Xem lời giải >>
Bài 11 :

Biến đổi \(\int\limits_1^e {\dfrac{{\ln x}}{{x{{\left( {\ln x + 2} \right)}^2}}}dx} \) thành \(\int\limits_2^3 {f\left( t \right)dt} \) với \(t = \ln x + 2\). Khi đó \(f\left( t \right)\) là hàm nào trong các hàm số sau?

Xem lời giải >>
Bài 12 :

Kết quả tích phân \(I = \int\limits_1^e {\dfrac{{\ln x}}{{x\left( {{{\ln }^2}x + 1} \right)}}dx} \) có dạng \(I = a\ln 2 + b\) với \(a,b \in Q\) . Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 13 :

Nếu tích phân \(I = \int\limits_0^{\dfrac{\pi }{6}} {{{\sin }^n}x\cos xdx}  = \dfrac{1}{{64}}\) thì $n$ bằng bao nhiêu?

Xem lời giải >>
Bài 14 :

Đổi biến \(x = 4\sin t\) của tích phân \(I = \int\limits_0^{\sqrt 8 } {\sqrt {16 - {x^2}} dx} \) ta được:

Xem lời giải >>
Bài 15 :

Cho tích phân \(I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {4 - {x^2}} }}} \). Bằng phương pháp đổi biến thích hợp ta đưa được tích phân đã cho về dạng:

Xem lời giải >>
Bài 16 :

Tìm \(a\) biết \(I = \int\limits_{ - 1}^2 {\dfrac{{{e^x}dx}}{{2 + {e^x}}}}  = \ln \dfrac{{ae + {e^3}}}{{ae + b}}\) với $a, b$ là các số nguyên dương.

Xem lời giải >>
Bài 17 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{e^{{{\sin }^2}x}}\sin x{{\cos }^3}x} dx\). Nếu đổi biến số \(t = {\sin ^2}x\) thì:

Xem lời giải >>
Bài 18 :

Kết quả của tích phân \(I = \int\limits_1^2 {\dfrac{{dx}}{{x\sqrt {1 + {x^3}} }}} \) có dạng \(I = a\ln 2 + b\ln \left( {\sqrt 2  - 1} \right) + c\) với \(a,b,c \in Q\). Khi đó giá trị của $a$ bằng:

Xem lời giải >>
Bài 19 :

Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{6\tan x}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \). Giả sử đặt \(u = \sqrt {3\tan x + 1} \) thì ta được:

Xem lời giải >>
Bài 20 :

Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {{{\left( {1 - \cos x} \right)}^n}\sin xdx} \) bằng:

Xem lời giải >>