Cho tam giác ABC vuông tại A có AB=9cm,tanC=54 . Tính độ dài các đoạn thẳng AC và BC . (làm tròn đến chữ số thập phân thứ 2 )
-
A.
AC=11,53;BC=7,2.
-
B.
AC=7;BC≈11,53.
-
C.
AC=5,2;BC≈11.
-
D.
AC=7,2;BC≈11,53.
Sử dụng tỉ số lượng giác của góc nhọn, định lý Pytago để tính cạnh.
Vì tam giác ABC vuông tại A nên tanC=ABAC⇒AC=AB:tanC=9:54=7,2cm
Theo định lý Pytago ta có BC2=AB2+AC2=92+7,22=132,84⇒BC=9√415≈11,53
Vậy AC=7,2;BC≈11,53.
Đáp án : D
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại A có AB=5cm,cotC=78 . Tính độ dài các đoạn thẳng AC và BC . (làm tròn đến chữ số thập phân thứ 2 )
Xét tam giác ABC trong Hình 4.16.
a) Viết các tỉ số lượng giác tang, cotang của góc B và góc C theo b và c.
b) Tính mỗi cạnh góc vuông b và c theo cạnh góc vuông kia và các tỉ số lượng giác trên của góc B và góc C.
Bóng trên mặt đất của một cây dài 25 m. Tính chiều cao của cây (làm tròn đến dm) , biết rằng tia nắng mặt trời tạo với mặt đất góc 400 (H.4.18).
Tính góc nghiêng α và chiều rộng AB của mái nhà kho trong Hình 4.23 (góc làm tròn đến độ, độ dài làm tròn đến dm)
Tính các góc của hình thoi có hai đường chéo dài 2√3 và 2.
Một người đứng tại điểm A, cách gương phẳng đặt nằm trên mặt đất tại điểm B là 1,2 m, nhìn thấy hình phản chiếu qua gương B của ngọn cây (cây có gốc ở tại điểm C cách B là 4,8 m, B nằm giữa A và C). Biết khoảng cách từ mặt đất đến mắt người đó là 1,65 m. Tính chiều cao của cây (H.4.24).
Tìm chiều rộng d của dòng sông trong Hình 4.27 (làm tròn đến m) .
Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy, ngọn cây tạo thành một tam giác vuông. Đoạn cây gãy tạo với mặt đất góc 200 và chắn ngang lối đi một đoạn 5 m (H.4.36). Hỏi trước khi bị gãy, cây cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Tính độ dài cạnh góc vuông x của mỗi tam giác vuông trong Hình 3 (kết quả làm tròn đến hàng phần trăm).
Cho tam giác MNP có ˆN=70o,ˆP=38o, đường cao MI = 11,5 cm. Độ dài cạnh NP của tam giác MNP (kết quả làm tròn đến hàng phần mười) bằng
A. 20,9 cm
B. 18,9 cm
C. 40,6 cm
D. 16,9 cm
Cho tam giác ABC vuông tại A (Hình 17)
a) Biểu diễn tanB,cotC theo AB,AC.
b) Viết công thức tính AC theo AB và tanB.
c) Viết công thức tính AC theo AB và cotC.
Tính AB trong Hình 17 khi AC=4cm và ˆB=34∘ (làm tròn kết quả đến hàng phần mười của centimét).
Từ vị trí A ở phía trên một tòa nhà có chiều cao AD=68m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là ^CAH=43∘. Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là ^BAH=28∘, điểm H thuộc đoạn BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).
Quan sát Hình 4.27 và tính:
a) Khoảng cách NH giữa Nam và cây;
b) Chiều cao AB của cây.
Cho tứ giác ABCD có ˆA=ˆD=900,ˆC=400,AB=4cm,AD=3cm. Tính diện tích tứ giác ABCD. (làm tròn đến chữ số thập phân thứ hai)
Cho tứ giác ABCD có ˆA=ˆD=900,ˆC=450,AB=6cm,AD=8cm. Tính diện tích tứ giác ABCD.
Một tam giác cân có đường cao ứng với đáy đúng bằng độ dài đáy. Tính các góc của tam giác đó.
Cho tam giác ABC vuông cân tại A(AB=AC=a) . Phân giác của góc B cắt AC tại D.
Tính DA;DC theo a.
Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC). Biết ∠ACB=600,CH=a. Tính độ dài AB và AC theo a.
Cho hình thang ABCD vuông tại A và D;∠C=500. Biết AB=2;AD=1,2. Tính diện tích hình thang ABCD.
Tính cạnh AC của tam giác vuông trong Hình 7.
Cho tam giác ABC có AB = 6cm, ˆA=15∘,ˆB=35∘. Tính độ dài đường cao CH của tam giác ABC (làm tròn kết quả đến hàng phần trăm của centimet).
Cho tam giác ABC có BC=11cm,^ABC=38o,^ACB=30o. Gọi H là chân đường vuông góc kẻ từ A đến BC. Hãy tính AH.
Chiều cao từ mặt đất đến đỉnh tháp Pisa ở Italia là 58m, tháp nghiêng góc 5o30′ đối với phương thẳng đứng (H.4.17). Khi Mặt Trời chiếu vuông góc với mặt đất thì bóng của tháp dài bao nhiêu decimét?
Cho tam giác ABC có đường cao AH, ˆB=60o,ˆC=45o và cạnh BC=6cm. Chứng minh rằng AH=3(3−√3)cm.
Hai chiếc thuyền A và B ở vị trí được minh họa như trong Hình 4.20. Tính khoảng cách giữa chúng (làm tròn đến m), biết IK=380m.
Độ dài y trong Hình 4 (kết quả làm tròn đến hàng phần mười) là
A. 10,2
B. 8,4
C. 10,3
D. 11
Từ một máy bay trực thăng, một người đặt mắt tại vị trí M ở độ cao MH = 920 m. Người đó nhìn hai vị trí A và B của hai đầu một cây cầu theo phương MA và MB tạo với phương nằm ngang Mx các góc lần lượt là ^AMx=37∘,^BMx=31∘ với Mx // AB (Hình 24). Hỏi độ dài AB của cây cầu là bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Flycam là từ viết tắt của Fly camera. Đây là thiết bị bay không người lái có lắp camera hay máy ảnh để quay phim hoặc chụp ảnh từ trên cao. Một chiếc Flycam đang ở vị trí A cách cây cầu BC (theo phương thẳng đứng) một khoảng AH = 120m. Biết góc tạo bởi phương AB, AC với các phương vuông góc với mặt cầu tại B, C lần lượt là ^ABx=30∘,^ACx=45∘ (hình 26). Tính độ dài BC của cây cầu (làm tròn kết quả đến hàng phần trăm của mét).
Một con sông có bề rộng AB = 50 m. Một chiếc thuyền đi thẳng từ vị trí A bên này bờ sông đến vị trí C bên kia bờ sông với góc tạo bởi phương AC và phương AB là ^BAC=45∘(Hình 29). Hỏi độ dài đoạn thẳng BC là bao nhiêu mét?