Đề bài

Tính tổng \({S_n} = 1 + 2a + 3{a^2} + 4{a^3} + ... + \left( {n + 1} \right){a^n}\) ($a \ne 1$ là số cho trước)

  • A.

    \(\dfrac{{\left( {n + 1} \right){a^{n + 2}} - (n + 2){a^{n + 1}} + 1}}{{{{\left( {1 - a} \right)}^2}}}\)

  • B.

    \(\dfrac{{\left( {n + 1} \right){a^{n + 2}} + (n + 2){a^{n + 1}} + 1}}{{{{\left( {1 - a} \right)}^2}}}\)

  • C.

    \(\dfrac{{\left( {n + 1} \right){a^{n + 2}} - (n + 2){a^{n + 1}} - 1}}{{{{\left( {1 - a} \right)}^2}}}\)    

  • D.

    \(\dfrac{{\left( {n + 1} \right){a^{n + 2}} + (n + 2){a^{n + 1}} - 1}}{{{{\left( {1 - a} \right)}^2}}}\)

Phương pháp giải

- Nhân của hai vế của tổng với \(a\).

- Trừ vế với vế tương ứng và áp dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân.

Lời giải của GV Loigiaihay.com

Nếu \(a = 0\) thì \(S = 1\).

Nếu \(a \ne 1\) thì ta có:

\(\begin{array}{l}a{S_n} = a + 2{a^2} + 3{a^3} + 4{a^4} + ... + \left( {n + 1} \right){a^{n + 1}}\\ \Rightarrow {S_n} - a{S_n} = 1 + a + {a^2} + {a^3} + ... + {a^n} - (n + 1){a^{n + 1}}\\ \Rightarrow {S_n}(1 - a) = \dfrac{{{a^{n + 1}} - 1}}{{a - 1}} - (n + 1){a^{n + 1}}\\ \Rightarrow {S_n} = \dfrac{1}{{1 - a}}\left[ {\dfrac{{{a^{n + 1}} - 1}}{{a - 1}} - (n + 1){a^{n + 1}}} \right]\\{\rm{        }} = \dfrac{1}{{1 - a}}\left[ {\dfrac{{{a^{n + 1}} - 1 - (n + 1){a^{n + 1}}\left( {a - 1} \right)}}{{a - 1}}} \right] = \dfrac{{\left( {n + 1} \right){a^{n + 2}} - (n + 2){a^{n + 1}} + 1}}{{{{\left( {1 - a} \right)}^2}}}\end{array}\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho cấp số nhân $\left( {{u_n}} \right)$, biết:  ${u_1} =  - 2,{u_2} = 8$ . Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 2 :

Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = 3,{u_5} = 48$ . Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 3 :

Cho  cấp số nhân$\left( {{u_n}} \right)$, biết:${u_1} =  - 2,\,{u_2} = 8$ . Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 4 :

Cho  cấp số nhân$\left( {{u_n}} \right)$có ${u_1} =  - 1;\,q = \dfrac{{ - 1}}{{10}}$. Số $\dfrac{1}{{{{10}^{103}}}}$ là số hạng thứ bao nhiêu?

Xem lời giải >>
Bài 5 :

Cho cấp số nhân $\left( {{u_n}} \right)$, biết:  ${u_5} = 3,{u_6} =  - 6$ . Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 6 :

Dãy số nào trong các dãy số sau không phải là cấp số nhân:

Xem lời giải >>
Bài 7 :

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q > 0\) . Biết \({u_2} = 4;{u_4} = 9\) .

Xem lời giải >>
Bài 8 :

Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân, biết rằng số đo của góc lớn nhất gấp $8$  lần số đo của góc nhỏ nhất. Tìm góc lớn nhất:

Xem lời giải >>
Bài 9 :

Cho hai số $x$ và $y$ biết các số \(x - y;x + y;3x - 3y\) theo thứ tự lập thành cấp số cộng và các số \(x - 2;y + 2;2x + 3y\) theo thứ tự đó lập thành cấp số nhân. Tìm $x;y$:

Xem lời giải >>
Bài 10 :

Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai khác $0$. Biết rằng các số \({u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\) theo thứ tự đó lập thành cấp số nhân với công bội \(q \ne 0\). Khi đó $q$ bằng:

Xem lời giải >>
Bài 11 :

Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng $36$. Một cấp số cộng có $n$ số hạng, công sai $d = 4$, tổng các số hạng bằng $510$. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó $n$ bằng:

Xem lời giải >>
Bài 12 :

Dân số của thành phố A hiện nay là $3$ triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là $2\% $. Dân số của thành phố A sau $3$ năm nữa sẽ là:

Xem lời giải >>
Bài 13 :

Chu kì bán rã của nguyên tố phóng xạ poloni $210$ là $138$ ngày (nghĩa là sau $138$ ngày khối lượng của nguyên tố đó chỉ còn một nửa). Khi đó khối lượng còn lại của $20$ gam poloni $210$ sau $7314$ ngày là:

Xem lời giải >>
Bài 14 :

Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có $10$ chữ số $1$)

Xem lời giải >>
Bài 15 :

Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_1} =  - 3$ và $q =  - 2.$ Tính tổng \(10\) số hạng đầu tiên của cấp số nhân đã cho.

Xem lời giải >>
Bài 16 :

Tìm tất cả các giá trị của tham số \(m\) để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \({x^3} - 7{x^2} + 2\left( {{m^2} + 6m} \right)x - 8 = 0.\)

Xem lời giải >>
Bài 17 :

Tìm \(x\) để các số \(2;{\rm{ }}\,8;{\rm{ }}\,x;{\rm{ }}\,128\) theo thứ tự đó lập thành một cấp số nhân.

Xem lời giải >>