Tìm tất cả các giá trị của tham số \(m\) để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: \({x^3} - 7{x^2} + 2\left( {{m^2} + 6m} \right)x - 8 = 0.\)
-
A.
\(m = - 7.\)
-
B.
\(m = 1.\)
-
C.
\(m = - 1\) hoặc \(m = 7.\)
-
D.
\(m = 1\) hoặc \(m = - 7.\)
- Sử dụng Vi – et cho phương trình bậc ba \({x_1}{x_2}{x_3} = - \dfrac{d}{a}\) và tính chất CSN tìm nghiệm ở giữa.
- Thay nghiệm này vào phương trình tìm \(m\) và thử lại.
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt \({x_1},{x_2},{x_3}\) lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có \({x_1}{x_2}{x_3} = 8.\)
Theo tính chất của cấp số nhân, ta có \({x_1}{x_3} = x_2^2\). Suy ra ta có \(x_2^3 = 8 \Leftrightarrow {x_2} = 2.\)
+ Điều kiện đủ: Với \(m = 1\) và \(m = 7\) thì \({m^2} + 6m = 7\) nên ta có phương trình
\({x^3} - 7{x^2} + 14x - 8 = 0.\)
Giải phương trình này, ta được các nghiệm là \(1,2,4.\) Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị \(q = 2.\)
Vậy, \(m = 1\) và \(m = - 7\) là các giá trị cần tìm. Do đó phương án \(D.\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = - 2,{u_2} = 8$ . Lựa chọn đáp án đúng.
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_1} = 3,{u_5} = 48$ . Lựa chọn đáp án đúng.
Cho cấp số nhân$\left( {{u_n}} \right)$, biết:${u_1} = - 2,\,{u_2} = 8$ . Lựa chọn đáp án đúng.
Cho cấp số nhân$\left( {{u_n}} \right)$có ${u_1} = - 1;\,q = \dfrac{{ - 1}}{{10}}$. Số $\dfrac{1}{{{{10}^{103}}}}$ là số hạng thứ bao nhiêu?
Cho cấp số nhân $\left( {{u_n}} \right)$, biết: ${u_5} = 3,{u_6} = - 6$ . Lựa chọn đáp án đúng.
Dãy số nào trong các dãy số sau không phải là cấp số nhân:
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q > 0\) . Biết \({u_2} = 4;{u_4} = 9\) .
Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân, biết rằng số đo của góc lớn nhất gấp $8$ lần số đo của góc nhỏ nhất. Tìm góc lớn nhất:
Cho hai số $x$ và $y$ biết các số \(x - y;x + y;3x - 3y\) theo thứ tự lập thành cấp số cộng và các số \(x - 2;y + 2;2x + 3y\) theo thứ tự đó lập thành cấp số nhân. Tìm $x;y$:
Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai khác $0$. Biết rằng các số \({u_1}{u_2};{u_2}{u_3};{u_1}{u_3}\) theo thứ tự đó lập thành cấp số nhân với công bội \(q \ne 0\). Khi đó $q$ bằng:
Ba số dương lập thành cấp số nhân, tích của số hạng thứ nhất và số hạng thứ ba bằng $36$. Một cấp số cộng có $n$ số hạng, công sai $d = 4$, tổng các số hạng bằng $510$. Biết số hạng đầu của cấp số cộng bằng số hạng thứ 2 của cấp số nhân. Khi đó $n$ bằng:
Dân số của thành phố A hiện nay là $3$ triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là $2\% $. Dân số của thành phố A sau $3$ năm nữa sẽ là:
Chu kì bán rã của nguyên tố phóng xạ poloni $210$ là $138$ ngày (nghĩa là sau $138$ ngày khối lượng của nguyên tố đó chỉ còn một nửa). Khi đó khối lượng còn lại của $20$ gam poloni $210$ sau $7314$ ngày là:
Tính tổng \({S_n} = 1 + 11 + 111 + ... + 11...11\) (có $10$ chữ số $1$)
Tính tổng \({S_n} = 1 + 2a + 3{a^2} + 4{a^3} + ... + \left( {n + 1} \right){a^n}\) ($a \ne 1$ là số cho trước)
Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_1} = - 3$ và $q = - 2.$ Tính tổng \(10\) số hạng đầu tiên của cấp số nhân đã cho.
Tìm \(x\) để các số \(2;{\rm{ }}\,8;{\rm{ }}\,x;{\rm{ }}\,128\) theo thứ tự đó lập thành một cấp số nhân.