Một xe du lịch khởi hành từ A để đến B. Nửa giờ sau, một xe tải xuất phát từ B để về A. Xe tải đi được $1$ giờ thì gặp xe du lịch. Tính vận tốc của mỗi xe, biết rằng xe du lịch có vận tốc lớn hơn xe tải là $10km/h$ và quãng đường $AB$ dài $90km.$
-
A.
Vận tốc xe du lịch là \(40\,\,\left( {km/h} \right)\), vận tốc xe tải là \(30\,\,\left( {km/h} \right)\)
-
B.
Vận tốc xe du lịch là \(30\,\,\left( {km/h} \right)\), vận tốc xe tải là \(40\,\,\left( {km/h} \right)\)
-
C.
Vận tốc xe du lịch là \(40\,\,\left( {km/h} \right)\), vận tốc xe tải là \(50\,\,\left( {km/h} \right)\)
-
D.
Vận tốc xe du lịch là \(50\,\,\left( {km/h} \right)\), vận tốc xe tải là \(40\,\,\left( {km/h} \right)\)
Giải theo các bước sau:
+ Lập phương trình: Chọn ẩn và đặt điều kiện; biểu diễn đại lượng chưa biết theo ẩn và đại lượng đã biết; lập phương trình biểu thị mối quan hệ giữa các đại lượng.
+ Giải phương trình.
+ Đối chiếu điều kiện rồi kết luận.
Gọi vận tốc của xe tải là x, đơn vị km/h, điều kiện: \(x > 0\) . Khi đó ta có:
Vận tốc xe du lịch là \(x + 10\left( {km/h} \right)\)
Thời gian xe du lịch đi từ A đến lúc gặp xe tải là: \(0,5 + 1 = 1,5\left( h \right)\)
Quãng đường xe du lịch và xe tải đi được đến lúc gặp nhau lần lượt là: \(\left( {x + 10} \right).1,5\left( {km} \right)\) và \(x.1\left( {km} \right)\) .
Vì hai xe đi ngược chiều nên quãng đường AB là tổng quãng đường mà hai xe đi được. Ta có phương trình:
\(\begin{array}{l}\left( {x + 10} \right).1,5 + x.1 = 90\\ \Leftrightarrow 2,5x = 75\\ \Leftrightarrow x = 30(tm)\end{array}\)
Vậy vận tốc của xe du lịch và xe tải lần lượt là $40{\rm{ }}\left( {km/h} \right)$ và $30{\rm{ }}\left( {km/h} \right).$
Đáp án : A
Các bài tập cùng chuyên đề
Chọn câu sai:
Hãy chọn câu đúng.
Phương trình \(2x + 3 = x + 5\) có nghiệm là:
Phương trình \({x^2} + x = 0\) có số nghiệm là
Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Hãy chọn bước giải sai đầu tiên cho phương trình\(\dfrac{{x - 1}}{x} = \dfrac{{3x + 2}}{{3x + 3}}\)
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Số nghiệm của phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\) là
Điều kiện xác định của phương trình \(1 + \dfrac{x}{{3 - x}} = \dfrac{{5x}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} + \dfrac{2}{{x + 2}}\) là:
Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là
Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là
Hai biểu thức \(P = \left( {x - 1} \right)\left( {x + 1} \right) + {x^2};\,\,Q = 2x\left( {x - 1} \right)\) có giá trị bằng nhau khi:
Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\) ta được nghiệm \({x_0}.\) Chọn câu đúng.
Giải phương trình: \(\dfrac{{x + 98}}{2} + \dfrac{{x + 96}}{4} + \dfrac{{x + 65}}{{35}} = \dfrac{{x + 3}}{{97}} + \dfrac{{x + 5}}{{95}} + \dfrac{{x + 49}}{{51}}\) ta được nghiệm là
Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là
Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là
Một hình chữ nhật có chu vi $372m$ nếu tăng chiều dài $21m$ và tăng chiều rộng $10m$ thì diện tích tăng $2862\,{m^2}.$ Chiều dài của hình chữ nhật là:
Tổng hai số là $321.$ Hiệu của $\dfrac{2}{3}$ số này và \(\dfrac{5}{6}\) số kia bằng $34.$ Số lớn là :
Một công việc được giao cho hai người. Người thứ nhất có thể làm xong công việc một mình trong $24$ phút. Lúc đầu, người thứ nhất làm một mình và sau \(\dfrac{{26}}{3}\) phút người thứ hai cùng làm. Hai người làm chung trong \(\dfrac{{22}}{3}\) phút thì hoàn thành công việc. Hỏi nếu làm một mình thì người thứ hai cần bao lâu để hoàn thành công việc.