Đề bài

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có phương trình: \({x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\) và đường thẳng \(\Delta :\,\,\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = z\) . Mặt phẳng $(P)$ vuông góc với \(\Delta \) và tiếp xúc với $(S)$ có phương trình là 

  • A.

    \(2x - 2y + z - 2 = 0\) và \(2x - 2y + z + 16 = 0\)

  • B.

    \(2x - 2y + z + 2 = 0\) và \(2x - 2y + z - 16 = 0\)

  • C.

    \(2x - 2y - 3\sqrt 8  + 6 = 0\) và \(2x - 2y - 3\sqrt 8  - 6 = 0\)

  • D.

    \(2x - 2y + 3\sqrt 8  - 6 = 0\) và \(2x - 2y - 3\sqrt 8  - 6 = 0\)

Phương pháp giải

Mặt phẳng tiếp xúc với mặt cầu thì khoảng cách từ tâm mặt cầu đến mặt phẳng bằng bán kính mặt cầu

Lời giải của GV Loigiaihay.com

Tâm mặt cầu $I(1;-2;1)$, bán kính $R=3$.

Mặt phẳng $(P)$ vuông góc với $\Delta $ có phương trình dạng $2{\rm{x - }}2y + z + D = 0$

Vì $(P)$ tiếp xúc với mặt cầu nên ${\rm{d}}\left( {I,\left( P \right)} \right) = R \Rightarrow \left| {D - 7} \right| = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{D = 2}\\{D =  - 16}\end{array}} \right.$

Phương trình $(P)$ là $2x-2y+z+2=0;  2x-2y+z-16=0$.

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu \((S):{x^2} + {\left( {y + 1} \right)^2} + z{}^2 = {R^2}\). Điều kiện của bán kính $R$ để trục $Ox$ tiếp xúc với $(S)$ là: 

Xem lời giải >>
Bài 2 :

Trong không gian với hệ tọa độ $Oxyz$, cho điểm \(A(1; - 2;3)\) và đường thẳng $d$ có phương trình \(\dfrac{{x + 1}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z + 3}}{{ - 1}}\). Tính đường kính của mặt cầu $(S)$ có tâm $A$ và tiếp xúc với đường thẳng $d$.

Xem lời giải >>
Bài 3 :

Trong không gian với hệ tọa độ $Oxyz$, phương trình  mặt cầu $(S)$ có tâm \(I(2;0;1)\)  và tiếp xúc với đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\) là:

Xem lời giải >>
Bài 4 :

Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng \(\Delta \)  có phương trình \(x = y = z\). Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với \(\Delta \) là:

Xem lời giải >>
Bài 5 :

Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục $Oz$ là:

Xem lời giải >>
Bài 6 :

Trong không gian với hệ tọa độ  $Oxyz$,  cho mặt cầu $(S)$ có phương trình

\({(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\). Trong số các đường thẳng sau, mặt cầu $(S)$ tiếp xúc với đường thẳng nào.

Xem lời giải >>
Bài 7 :

Xét đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + 2t\end{array} \right.\)  và mặt cầu $(S)$ có phương trình  \({(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 4\). Nhận xét nào sau đây đúng.

Xem lời giải >>
Bài 8 :

Trong không gian với hệ tọa độ  $Oxyz$, cho mặt cầu \((S):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + \left( {z - 3} \right){}^2 = 9\) và đường thẳng \(d:x - 1 = \dfrac{{y - 2}}{2} = \dfrac{{z - 4}}{3}\).  $(d)$ cắt  $(S)$ tại hai điểm phân biệt $A$ và $B$. Khi đó $AB$ bằng: 

Xem lời giải >>
Bài 9 :

Trong không gian với hệ tọa độ $Oxyz$, phương trình mặt cầu $(S)$ có tâm \(I(3; - 2;0)\)  và cắt trục $Oy $ tại hai điểm $A, B$ mà \(AB = 8\) là

Xem lời giải >>
Bài 10 :

Trong không gian với hệ tọa độ $Oxyz$, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = t\\z = 4\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = t'\\y = 3 - t'\\z = 0\end{array} \right.\) . Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng $d$ và $d'$ là: 

Xem lời giải >>
Bài 11 :

Trong không gian với hệ tọa độ  $Oxyz$, cho mặt cầu $(S)$ có phương trình \({(x + 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\). Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu $(S)$ qua trục $Oz$.

Xem lời giải >>
Bài 12 :

Trong không gian với hệ tọa độ  $Oxyz$, cho mặt phẳng \((P):2x - y - 2z + 1 = 0\) và ba điểm\(A(1; - 2;0)\), \(B(1;0; - 1)\)  và \(C(0;0; - 2)\). Hỏi có tất cả bao nhiêu mặt cầu có tâm thuộc mặt phẳng $(P)$ và tiếp xúc với ba đường thẳng $AB, AC, BC$?

Xem lời giải >>
Bài 13 :

Trong không gian với hệ tọa độ ${\rm{Ox}}yz$. Hãy viết phương trình  mặt cầu $(S)$ có tâm \(I(2\,;\,0;1)\) và tiếp xúc với đường thẳng \(d: \dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\).

Xem lời giải >>
Bài 14 :

Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng  $d:\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y - 2}}{1} = \dfrac{{z + 1}}{2}$, điểm $A (2;  -1; 1)$. Gọi $I$ là hình chiếu vuông góc của $A$ lên $d$. Viết phương trình mặt cầu $(C)$ có tâm $I$ và đi qua $A$.

Xem lời giải >>
Bài 15 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.

Xem lời giải >>
Bài 16 :

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có tâm $I$ thuộc đường thẳng \(\Delta :\dfrac{x}{1} = \dfrac{{y + 3}}{1} = \dfrac{z}{2}\) . Biết rằng mặt cầu $(S)$ có bán kính bằng \(2\sqrt 2 \) và cắt mặt phẳng $(Oxz)$ theo một đường tròn có bán kính $2$. Tìm tọa độ tâm $I$.

Xem lời giải >>
Bài 17 :

Trong không gian với hệ tọa độ $Oxyz$ , cho đường thẳng \(d:\left\{ \begin{array}{l}x = t\\y =  - 1\\z =  - t\end{array} \right.\) và 2 mặt phẳng $(P)$  và $(Q)$ lần lượt có phương  trình $x + 2y + 2z + 3 = 0;x + 2y + 2z + 7 = 0$. Viết phương trình mặt cầu $(S)$ có tâm$I$  thuộc đường thẳng $d$, tiếp xúc với hai mặt phẳng $(P)$  và $(Q)$.

Xem lời giải >>
Bài 18 :

Trong không gian với hệ tọa độ $Oxyz$, cho đường thẳng \(d:\dfrac{x}{2} = \dfrac{{z - 3}}{1} = \dfrac{{y - 2}}{1}\)  và hai mặt phẳng $(P): x – 2y + 2z = 0. (Q): x – 2y + 3z -5 =0$. Mặt cầu $(S)$ có tâm $I $ là giao điểm của đường thẳng $d$ và mặt phẳng $(P)$. Mặt phẳng $(Q)$ tiếp xúc với mặt cầu $(S)$. Viết phương trình của mặt cầu $(S)$.

Xem lời giải >>
Bài 19 :

Trong không gian Oxyz, cho 3 điểm \(A\left( {0;1;1} \right),{\mkern 1mu} B\left( {3;0; - 1} \right),{\mkern 1mu} C\left( {0;21; - 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\). Điểm M thuộc mặt cầu (S) sao cho tổng \(3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \(\overrightarrow {OM} \) là

Xem lời giải >>
Bài 20 :

Trong không gian Oxyz, cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):\,\,2x + 2y - z - 3 = 0\)  và mặt cầu \(\left( S \right):\,\,{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 5} \right)^2} = 36\). Gọi \(\Delta \) là đường thẳng đi qua E, nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \(\Delta \) là:

Xem lời giải >>