Tại một khu di tích vào ngày lễ hội hằng năm, tốc độ thay đổi lượng khách tham quan được biểu diễn bằng hàm số \(Q'(t) = 4{t^3} - 72{t^2} + 288t\), trong đó t tính bằng giờ \((0 \le t \le 13)\), Q’(t) tính bằng khách/giờ. Tại thời điểm t = 2 giờ đã có 500 người có mặt.
a) Lượng khách tham quan được biểu diễn bởi hàm số \(Q(t) = {t^4} - 24{t^3} + 144{t^2}\).
b) Tại thời điểm t = 5 giờ, lượng khách tham quan là 1325 người.
c) Lượng khách tham quan lớn nhất là 1296 người.
d) Tại thời điểm t = 13 giờ, lượng khách tham quan là lớn nhất.
a) Lượng khách tham quan được biểu diễn bởi hàm số \(Q(t) = {t^4} - 24{t^3} + 144{t^2}\).
b) Tại thời điểm t = 5 giờ, lượng khách tham quan là 1325 người.
c) Lượng khách tham quan lớn nhất là 1296 người.
d) Tại thời điểm t = 13 giờ, lượng khách tham quan là lớn nhất.
a) Tìm nguyên hàm của Q’(t).
b) Tính Q(5).
c, d) Tìm giá trị lớn nhất của Q(t).
a) Sai. Ta có \(Q(t) = {t^4} - 24{t^3} + 144{t^2} + C\).
Tại thời điểm t = 2 giờ, đã có 500 người có mặt nên:
\(Q(2) = 500 \Leftrightarrow {2^4} - {24.2^3} + {144.2^2} + C = 500 \Leftrightarrow C = 100\).
Vậy lượng khách tham quan được biểu diễn bởi \(Q(t) = {t^4} - 24{t^3} + 144{t^2} + 100\).
b) Đúng. Tại thời điểm t = 5 giờ thì lượng khách là:
\(Q(5) = {5^4} - {24.5^3} + {144.5^2} + 100 = 1325\) người.
c) Sai. \(Q'(t) = 4{t^3} - 72{t^2} + 288t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 6\\t = 12\end{array} \right.\)
Xét trên [0;13] theo đề bài:
Q(0) = 100; Q(6) = 1396; Q(12) = 100; Q(13) = 269.
Vậy lượng khách lớn nhất là 1396 người.
d) Sai. Lượng khách lớn nhất tại thời điểm t = 6 giờ.
Bài toán này là một ứng dụng của nguyên hàm trong thực tế, cụ thể là việc tìm hàm số biểu diễn đại lượng từ hàm số biểu diễn tốc độ thay đổi của đại lượng đó.
1. Nguyên hàm:
- Tốc độ thay đổi lượng khách tham quan được cho bởi hàm số Q'(t). Lượng khách tham quan tại thời điểm t được biểu diễn bởi hàm số Q(t). Hàm Q(t) chính là nguyên hàm của hàm Q'(t).
- Nguyên hàm của một hàm số f(x) là một hàm số F(x) sao cho F'(x) = f(x). Khi tìm nguyên hàm, chúng ta luôn có một hằng số tích phân C, bởi vì đạo hàm của một hằng số bằng 0. Do đó, họ các nguyên hàm của Q'(t) là $Q(t) = \int Q'(t) dt = F(t) + C$, trong đó F(t) là một nguyên hàm của Q'(t).
2. Tìm giá trị lớn nhất của hàm số trên một đoạn:
Để tìm lượng khách tham quan lớn nhất trong khoảng thời gian $0 \le t \le 13$, chúng ta cần tìm giá trị lớn nhất của hàm số Q(t) trên đoạn [0;13].
- Tìm các điểm cực trị của hàm số trên khoảng (0, 13) bằng cách giải phương trình Q'(t) = 0.
- Tính giá trị của hàm Q(t) tại các điểm cực trị tìm được (nằm trong đoạn) và tại hai điểm mút của đoạn t = 0 và t = 13 và so sánh các giá trị đó.
- Kết luận giá trị lớn nhất.
Các bài tập cùng chuyên đề
Tìm:
a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\);
b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\);
c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\);
d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).
Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {2^x} - \frac{1}{x}\);
b) \(y = x\sqrt x + 3\cos x - \frac{2}{{{{\sin }^2}x}}\).
Tìm:
a) \(\int {\left( {5\sin x + 6\cos x} \right)dx} \)
b) \(\int {\left( {2 + {{\cot }^2}x} \right)dx} \)
c) \(\int {{2^{3x}}dx} \)
d) \(\int {\left( {{{2.3}^{2x}} - {e^{x + 1}}} \right)dx} \)
Cho hàm số \(f(x) = 2x + {e^x}\). Nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 là:
A. \({x^2} + {e^x} + 2023\)
B. \({x^2} + {e^x} + C\)
C. \({x^2} + {e^x} + 2022\)
D. \({x^2} + {e^x}\)
a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023
b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023
Tính đạo hàm của hàm số \(F\left( x \right) = x{e^x}\), suy ra nguyên hàm của hàm số \(f\left( x \right) = \left( {x + 1} \right){e^x}\).
Tìm
a) \(\int {{x^5}dx} \)
b) \(\int {\frac{1}{{\sqrt[3]{{{x^2}}}}}dx} \) \(\left( {x > 0} \right)\)
c) \(\int {{7^x}dx} \)
d) \(\int {\frac{{{3^x}}}{{{5^x}}}dx} \)
Tìm
a) \(\int {\left( {2{x^5} + 3} \right)dx} \)
b) \(\int {\left( {5\cos x - 3\sin x} \right)dx} \)
c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx} \)
d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx} \)
Tìm
a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \)
b) \(\int {{{\sin }^2}\frac{x}{2}dx} \)
c) \(\int {{{\tan }^2}xdx} \)
d) \(\int {{2^{3x}}{{.3}^x}} dx\)
Kí hiệu \(h\left( x \right)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao 2 m. Trong 10 năm tiếp theo, cây phát triểun với tốc độ \(h'\left( x \right) = \frac{1}{x}\) (m/năm).
a) Xác định chiều cao của cây sau \(x\) năm \(\left( {1 \le x \le 11} \right)\).
b) Sau bao nhiêu năm cây cao 3 m?
Một chiếc xe đang chuyển động với tốc độ \({v_0} = 10{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\). Tính quãng đường xe đó đi được trong 3 giây kể từ khi bắt đầu tăng tốc.
Khẳng định nào sau đây đúng?
A. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)
B. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx = \frac{{{x^3}}}{3} - 2x + \frac{1}{x} + C} \)
C. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3} + C\)
D. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3}\left( {1 + \frac{1}{{{x^2}}}} \right) + C\)
Tìm:
a) \(\int {\left[ {4{{\left( {2 - 3x} \right)}^2} - 3\cos x} \right]dx} \)
b) \(\int {\left( {3{x^3} - \frac{1}{{2{x^3}}}} \right)dx} \)
c) \(\int {\left( {\frac{2}{{{{\sin }^2}x}} - \frac{1}{{3{{\cos }^2}x}}} \right)dx} \)
d) \(\int {\left( {{3^2}x - 2 + 4\cos x} \right)dx} \)
e) \(\int {\left( {4\sqrt[5]{{{x^4}}} + \frac{3}{{\sqrt {{x^3}} }}} \right)dx} \)
g) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)
Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\). Từ đó suy ra nguyên hàm của \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).
Cho \(f\left( x \right) = {x^2}\ln x\) và \(g\left( x \right) = x\ln x\). Tính \(f'\left( x \right)\) và \(\int {g\left( x \right)dx} \).
Tìm:
a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)} dx\); b) \(\int {\left( {3\sqrt x - 4\sin x} \right)} {\rm{ }}dx\).
Tìm:
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\).
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t = 0 là thời điểm viên đạn được bắn lên) cho bởi v(t) = 150 - 9,8t (m/s).
Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau t = 3 giây.
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).
Cho \(F\left( u \right)\) là một nguyên hàm của hàm số \(f\left( u \right)\) trên khoảng \(K\) và \(u\left( x \right),{\rm{ x}} \in {\rm{J}}\), là hàm số có đạo hàm liên tục, \(u\left( x \right) \in K\) với mọi \({\rm{x}} \in {\rm{J}}\). Tìm \(\int {f\left( {u\left( x \right)} \right)} \cdot u'\left( x \right)dx\).
Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \) và \(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).
Tìm:
a) \(\int {\frac{{2x - 1}}{{x + 1}}} dx\);
b) \(\int {\left( {3 + 2{{\sin }^2}x} \right)} {\rm{ }}dx\).
Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {\sin ^2}\frac{x}{2}\);
b) \(y = {e^{2x}} - 2{x^5} + 5\).
a) \(\int\limits_0^3 {\left| {3 - x} \right|dx} \);
b) \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} \)
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} \).
Hàm số \(y = \log x\) là nguyên hàm của hàm số:
A. \(y = \frac{1}{x}\).
B. \(y = \frac{1}{{x\ln 10}}\).
C. \(y = \frac{{\ln 10}}{x}\).
D. \(y = \frac{1}{{x\log 10}}\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = 4{x^3} - 3{{\rm{x}}^2}\).
a) \(\int {f\left( x \right)dx} = \int {4{x^3}dx} - \int {3{{\rm{x}}^2}dx} \).
b) \(f'\left( x \right) = 12{{\rm{x}}^2} - 6{\rm{x}}\).
c) \(f'\left( x \right) = {x^4} - {x^3}\).
d) \(\int {f\left( x \right)dx} = {x^4} + {x^3} + C\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \sin x + \cos x\).
a) \(\int {f\left( x \right)dx} = \int {\sin xdx} + \int {\cos xdx} \).
b) \(f'\left( x \right) = \cos x - \sin x\).
c) \(f'\left( x \right) + f\left( x \right) = \cos x\).
d) \(\int {f\left( x \right)dx} = - \cos x + \sin x + C\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \left( {x + 2} \right)\left( {x + 1} \right)\).
a) \(f\left( x \right) = {x^2} + 3{\rm{x}} + 2\).
b) \(f'\left( x \right) = 2{\rm{x}} + 3\).
c) \(\int {f\left( x \right)dx} = \int {\left( {x + 2} \right)dx} .\int {\left( {x + 1} \right)dx} \).
d) \(\int {f\left( x \right)dx} = \frac{1}{3}{x^3} + \frac{3}{2}{x^2} + 2{\rm{x}} + C\).
Tìm nguyên hàm của các hàm số sau:
a) \(f\left( x \right) = 2\sin x\);
b) \(f\left( x \right) = \cos x + {x^3}\);
c) \(f\left( x \right) = \frac{{ - {x^4}}}{2} - 3\cos x\).
Tìm:
a) \(\int {{2^x}\ln 2dx} \);
b) \(\int {2x\cos \left( {{x^2}} \right)dx} \);
c) \(\int {{{\cos }^2}\left( {\frac{x}{2}} \right)dx} \).
Tìm \(\int {\frac{{{x^2} + 7{\rm{x}} + 12}}{{x + 3}}dx} \) trên \(\left( {0; + \infty } \right)\).
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \frac{{{x^7} + 8}}{x}\).
a) \(f\left( x \right) = {x^6} + \frac{8}{x}\).
b) \(\int {f\left( x \right)dx} = \int {{x^6}dx} - \int {\frac{8}{x}dx} \).
c) \(\int {f\left( x \right)dx} = \int {{x^6}dx} + \int {\frac{8}{x}dx} \).
d) \(\int {f\left( x \right)dx} = \frac{{{x^7}}}{7} + 8\ln \left| x \right|\).