Đề bài

Tìm:

a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\);

b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\).

Phương pháp giải

Ý a: Sử dụng công thức hạ bậc cho \({\sin ^2}\frac{x}{2}\), áp dụng các công thức tính nguyên hàm cơ bản cho hàm lượng giác và các hàm còn lại.

Ý b: Khai triển, rút gọn biểu thức dưới dấu căn bằng các công thức lượng giác đã học đưa hàm số về dạng có thể áp dụng trực tiếp công thức nguyên hàm cơ bản.

Gợi ý: \({\tan ^2}x = 1 + \frac{1}{{{{\cos }^2}x}};{\rm{ co}}{{\rm{t}}^2}x = 1 + \frac{1}{{{{\sin }^2}x}}\).

Lời giải của GV Loigiaihay.com

a) Ta có \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx = \int x dx + \int {\frac{{1 - \cos x}}{2}} dx = \frac{{{x^2}}}{2} + \frac{x}{2} - \frac{{\sin x}}{2} + C = \frac{{{x^2} + x - \sin x}}{2} + C\).

b) Ta có \({\left( {2\tan x + \cot x} \right)^2} = 4{\tan ^2}x + 4 \cdot \tan x \cdot \cot x + {\cot ^2}x\)\( = 4 \cdot \left( {1 + \frac{1}{{{{\cos }^2}x}}} \right) + 4 \cdot 1 + \left( {1 + \frac{1}{{{{\sin }^2}x}}} \right)\)

\( = 9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}\).

Do đó\(\int {{{\left( {2\tan x + \cot x} \right)}^2}} dx = \int {\left( {9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}} \right)} dx\)

\( = 9\int {dx}  + 4\int {\frac{1}{{{{\cos }^2}x}}} dx + \int {\frac{1}{{{{\sin }^2}x}}} dx = 9x + 4\tan x - \cot x + C\).

Các bài tập cùng chuyên đề

Bài 1 :

Tìm:

a) \(\int {\left( {3\sqrt x  + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\);

b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\);

c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\);

d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).

 
Xem lời giải >>
Bài 2 :

Tìm họ tất cả các nguyên hàm của các hàm số sau:

a) \(y = {2^x} - \frac{1}{x}\);

b) \(y = x\sqrt x  + 3\cos x - \frac{2}{{{{\sin }^2}x}}\).

 
Xem lời giải >>
Bài 3 :

Tìm:

a) \(\int {\left( {5\sin x + 6\cos x} \right)dx} \)

b) \(\int {\left( {2 + {{\cot }^2}x} \right)dx} \)

c) \(\int {{2^{3x}}dx} \)

d) \(\int {\left( {{{2.3}^{2x}} - {e^{x + 1}}} \right)dx} \)

Xem lời giải >>
Bài 4 :

Cho hàm số \(f(x) = 2x + {e^x}\). Nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 là:

A. \({x^2} + {e^x} + 2023\)

B. \({x^2} + {e^x} + C\)

C. \({x^2} + {e^x} + 2022\)

D. \({x^2} + {e^x}\)

Xem lời giải >>
Bài 5 :

a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023

b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023

Xem lời giải >>
Bài 6 :

Tính đạo hàm của hàm số \(F\left( x \right) = x{e^x}\), suy ra nguyên hàm của hàm số \(f\left( x \right) = \left( {x + 1} \right){e^x}\).

Xem lời giải >>
Bài 7 :

Tìm

a) \(\int {{x^5}dx} \)

b) \(\int {\frac{1}{{\sqrt[3]{{{x^2}}}}}dx} \) \(\left( {x > 0} \right)\)

c) \(\int {{7^x}dx} \)

d) \(\int {\frac{{{3^x}}}{{{5^x}}}dx} \)

Xem lời giải >>
Bài 8 :

Tìm

a) \(\int {\left( {2{x^5} + 3} \right)dx} \)

b) \(\int {\left( {5\cos x - 3\sin x} \right)dx} \)

c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx} \)

d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx} \)

Xem lời giải >>
Bài 9 :

Tìm

a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \)

b) \(\int {{{\sin }^2}\frac{x}{2}dx} \)

c) \(\int {{{\tan }^2}xdx} \)

d) \(\int {{2^{3x}}{{.3}^x}} dx\)

Xem lời giải >>
Bài 10 :

Kí hiệu \(h\left( x \right)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao 2 m. Trong 10 năm tiếp theo, cây phát triểun với tốc độ \(h'\left( x \right) = \frac{1}{x}\) (m/năm).

a) Xác định chiều cao của cây sau \(x\) năm \(\left( {1 \le x \le 11} \right)\).

b) Sau bao nhiêu năm cây cao 3 m?

Xem lời giải >>
Bài 11 :

Một chiếc xe đang chuyển động với tốc độ \({v_0} = 10{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\). Tính quãng đường xe đó đi được trong 3 giây kể từ khi bắt đầu tăng tốc.

Xem lời giải >>
Bài 12 :

Khẳng định nào sau đây đúng?
A. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)
B. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx = \frac{{{x^3}}}{3} - 2x + \frac{1}{x} + C} \)
C. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3} + C\)
D. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3}\left( {1 + \frac{1}{{{x^2}}}} \right) + C\)

Xem lời giải >>
Bài 13 :

Tìm:

a) \(\int {\left[ {4{{\left( {2 - 3x} \right)}^2} - 3\cos x} \right]dx} \)

b) \(\int {\left( {3{x^3} - \frac{1}{{2{x^3}}}} \right)dx} \)

c) \(\int {\left( {\frac{2}{{{{\sin }^2}x}} - \frac{1}{{3{{\cos }^2}x}}} \right)dx} \)

d) \(\int {\left( {{3^2}x - 2 + 4\cos x} \right)dx} \)

e) \(\int {\left( {4\sqrt[5]{{{x^4}}} + \frac{3}{{\sqrt {{x^3}} }}} \right)dx} \)

g) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)

Xem lời giải >>
Bài 14 :

Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\). Từ đó suy ra nguyên hàm của \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).

Xem lời giải >>
Bài 15 :

Cho \(f\left( x \right) = {x^2}\ln x\) và \(g\left( x \right) = x\ln x\). Tính \(f'\left( x \right)\) và \(\int {g\left( x \right)dx} \).

Xem lời giải >>
Bài 16 :

Tìm:

a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)} dx\);                            b) \(\int {\left( {3\sqrt x  - 4\sin x} \right)} {\rm{ }}dx\).

Xem lời giải >>
Bài 17 :

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t=0 là thời điểm viên đạn được bắn lên) cho bởi \(v\left( t \right) = 150 - 9,8t\) (m/s).

Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau \(t = 3\) giây;                   

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Xem lời giải >>
Bài 18 :

Cho \(F\left( u \right)\) là một nguyên hàm của hàm số \(f\left( u \right)\) trên khoảng \(K\) và \(u\left( x \right),{\rm{ x}} \in {\rm{J}}\), là hàm số có đạo hàm liên tục, \(u\left( x \right) \in K\) với mọi \({\rm{x}} \in {\rm{J}}\). Tìm \(\int {f\left( {u\left( x \right)} \right)}  \cdot u'\left( x \right)dx\).

Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \) và \(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).

Xem lời giải >>
Bài 19 :

Tìm:

a) \(\int {\frac{{2x - 1}}{{x + 1}}} dx\);

b) \(\int {\left( {3 + 2{{\sin }^2}x} \right)} {\rm{ }}dx\).

Xem lời giải >>
Bài 20 :

Tìm họ tất cả các nguyên hàm của các hàm số sau:

a) \(y = {\sin ^2}\frac{x}{2}\);

b) \(y = {e^{2x}} - 2{x^5} + 5\).

Xem lời giải >>
Bài 21 :

a) \(\int\limits_0^3 {\left| {3 - x} \right|dx} \);

b) \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} \)

c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} \).

Xem lời giải >>
Bài 22 :

Hàm số \(y = \log x\) là nguyên hàm của hàm số:

A. \(y = \frac{1}{x}\).

B. \(y = \frac{1}{{x\ln 10}}\).

C. \(y = \frac{{\ln 10}}{x}\).

D. \(y = \frac{1}{{x\log 10}}\).

Xem lời giải >>
Bài 23 :

Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).

Cho hàm số \(f\left( x \right) = 4{x^3} - 3{{\rm{x}}^2}\).

a) \(\int {f\left( x \right)dx}  = \int {4{x^3}dx}  - \int {3{{\rm{x}}^2}dx} \).

b) \(f'\left( x \right) = 12{{\rm{x}}^2} - 6{\rm{x}}\).

c) \(f'\left( x \right) = {x^4} - {x^3}\).

d) \(\int {f\left( x \right)dx}  = {x^4} + {x^3} + C\).

Xem lời giải >>
Bài 24 :

Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).

Cho hàm số \(f\left( x \right) = \sin x + \cos x\).

a) \(\int {f\left( x \right)dx}  = \int {\sin xdx}  + \int {\cos xdx} \).

b) \(f'\left( x \right) = \cos x - \sin x\).

c) \(f'\left( x \right) + f\left( x \right) = \cos x\).

d) \(\int {f\left( x \right)dx}  =  - \cos x + \sin x + C\). 

Xem lời giải >>
Bài 25 :

Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).

Cho hàm số \(f\left( x \right) = \left( {x + 2} \right)\left( {x + 1} \right)\).

a) \(f\left( x \right) = {x^2} + 3{\rm{x}} + 2\).

b) \(f'\left( x \right) = 2{\rm{x}} + 3\).

c) \(\int {f\left( x \right)dx}  = \int {\left( {x + 2} \right)dx} .\int {\left( {x + 1} \right)dx} \).

d) \(\int {f\left( x \right)dx}  = \frac{1}{3}{x^3} + \frac{3}{2}{x^2} + 2{\rm{x}} + C\).

Xem lời giải >>
Bài 26 :

Tìm nguyên hàm của các hàm số sau:

a) \(f\left( x \right) = 2\sin x\);

b) \(f\left( x \right) = \cos x + {x^3}\);

c) \(f\left( x \right) = \frac{{ - {x^4}}}{2} - 3\cos x\).

Xem lời giải >>
Bài 27 :

Tìm:

a) \(\int {{2^x}\ln 2dx} \);

b) \(\int {2x\cos \left( {{x^2}} \right)dx} \);

c) \(\int {{{\cos }^2}\left( {\frac{x}{2}} \right)dx} \).

Xem lời giải >>
Bài 28 :

Tìm \(\int {\frac{{{x^2} + 7{\rm{x}} + 12}}{{x + 3}}dx} \) trên \(\left( {0; + \infty } \right)\).

Xem lời giải >>
Bài 29 :

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho hàm số \(f\left( x \right) = \frac{{{x^7} + 8}}{x}\).

a) \(f\left( x \right) = {x^6} + \frac{8}{x}\).

b) \(\int {f\left( x \right)dx}  = \int {{x^6}dx}  - \int {\frac{8}{x}dx} \).

c) \(\int {f\left( x \right)dx}  = \int {{x^6}dx}  + \int {\frac{8}{x}dx} \).

d) \(\int {f\left( x \right)dx}  = \frac{{{x^7}}}{7} + 8\ln \left| x \right|\).

Xem lời giải >>
Bài 30 :

Tìm:

a) \(\int {{e^{5x}}} dx\);

b) \(\int {\frac{1}{{{{2024}^x}}}} dx\);

c) \(\int {\left( {{2^x} + {x^2}} \right)} dx\);

d) \(\int {\left( {{2^x}{{.3}^{2{\rm{x}} + 1}}} \right)} dx\);

e) \(\int {\frac{{{3^x} + {4^x} + 1}}{{{5^x}}}} dx\).

Xem lời giải >>