Tại một nhà máy, gọi C(x) là tổng chi phí (tính theo triệu đồng) để sản xuất x tấn sản phẩm A trong một tháng. Khi đó, đạo hàm C’(x), gọi là chi phí cận biên, cho biết tốc độ gia tăng tổng chi phí theo lượng gia tăng sản phẩm được sản xuất. Giả sử chi phí cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức: \(C'(x) = 5 - 0,06x + 0,00072{x^2}\) với \(0 \le x \le 150\). Biết rằng C(0) = 30 triệu đồng, gọi là chi phí cố định. Tính tổng chi phí khi nhà máy sản xuất 100 tấn sản phẩm A trong tháng (nhập đáp án vào ô trống).
Áp dụng công thức tính nguyên hàm của hàm số lũy thừa để tìm C(x).
Tính C(100).
Ta có \(C(x) = \int {C'(x)dx} = \int {\left( {5 - 0,06x + 0,00072{x^2}} \right)dx} = 5x - 0,03{x^2} + 0,00024{x^3} + {C_1}\).
\(C(0) = 30 \Leftrightarrow 5.0 - 0,{03.0^2} + 0,{00024.0^3} + {C_1} = 30 \Leftrightarrow {C_1} = 30\).
Suy ra \(C(x) = 5x - 0,03{x^2} + 0,00024{x^3} + 30\).
Tổng chi phí khi nhà máy sản xuất 100 tấn sản phẩm A trong tháng là:
\(C(100) = 5.100 - 0,{03.100^2} + 0,{00024.100^3} + 30 = 470\).
Các bài tập cùng chuyên đề
Tìm:
a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\);
b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\);
c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\);
d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).
Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {2^x} - \frac{1}{x}\);
b) \(y = x\sqrt x + 3\cos x - \frac{2}{{{{\sin }^2}x}}\).
Tìm:
a) \(\int {\left( {5\sin x + 6\cos x} \right)dx} \)
b) \(\int {\left( {2 + {{\cot }^2}x} \right)dx} \)
c) \(\int {{2^{3x}}dx} \)
d) \(\int {\left( {{{2.3}^{2x}} - {e^{x + 1}}} \right)dx} \)
Cho hàm số \(f(x) = 2x + {e^x}\). Nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023 là:
A. \({x^2} + {e^x} + 2023\)
B. \({x^2} + {e^x} + C\)
C. \({x^2} + {e^x} + 2022\)
D. \({x^2} + {e^x}\)
a) Cho hàm số \(f(x) = {x^2} + {e^{ - x}}\). Tìm nguyên hàm F(x) của hàm số f(x) trên \(\mathbb{R}\) sao cho F(0) = 2023
b) Cho hàm số \(g(x) = \frac{1}{x}\). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng \((0; + \infty )\) sao cho G(1) = 2023
Tính đạo hàm của hàm số \(F\left( x \right) = x{e^x}\), suy ra nguyên hàm của hàm số \(f\left( x \right) = \left( {x + 1} \right){e^x}\).
Tìm
a) \(\int {{x^5}dx} \)
b) \(\int {\frac{1}{{\sqrt[3]{{{x^2}}}}}dx} \) \(\left( {x > 0} \right)\)
c) \(\int {{7^x}dx} \)
d) \(\int {\frac{{{3^x}}}{{{5^x}}}dx} \)
Tìm
a) \(\int {\left( {2{x^5} + 3} \right)dx} \)
b) \(\int {\left( {5\cos x - 3\sin x} \right)dx} \)
c) \(\int {\left( {\frac{{\sqrt x }}{2} - \frac{2}{x}} \right)dx} \)
d) \(\int {\left( {{e^{x - 2}} - \frac{2}{{{{\sin }^2}x}}} \right)dx} \)
Tìm
a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \)
b) \(\int {{{\sin }^2}\frac{x}{2}dx} \)
c) \(\int {{{\tan }^2}xdx} \)
d) \(\int {{2^{3x}}{{.3}^x}} dx\)
Kí hiệu \(h\left( x \right)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao 2 m. Trong 10 năm tiếp theo, cây phát triểun với tốc độ \(h'\left( x \right) = \frac{1}{x}\) (m/năm).
a) Xác định chiều cao của cây sau \(x\) năm \(\left( {1 \le x \le 11} \right)\).
b) Sau bao nhiêu năm cây cao 3 m?
Một chiếc xe đang chuyển động với tốc độ \({v_0} = 10{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\). Tính quãng đường xe đó đi được trong 3 giây kể từ khi bắt đầu tăng tốc.
Khẳng định nào sau đây đúng?
A. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)
B. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx = \frac{{{x^3}}}{3} - 2x + \frac{1}{x} + C} \)
C. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3} + C\)
D. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3}\left( {1 + \frac{1}{{{x^2}}}} \right) + C\)
Tìm:
a) \(\int {\left[ {4{{\left( {2 - 3x} \right)}^2} - 3\cos x} \right]dx} \)
b) \(\int {\left( {3{x^3} - \frac{1}{{2{x^3}}}} \right)dx} \)
c) \(\int {\left( {\frac{2}{{{{\sin }^2}x}} - \frac{1}{{3{{\cos }^2}x}}} \right)dx} \)
d) \(\int {\left( {{3^2}x - 2 + 4\cos x} \right)dx} \)
e) \(\int {\left( {4\sqrt[5]{{{x^4}}} + \frac{3}{{\sqrt {{x^3}} }}} \right)dx} \)
g) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)
Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\). Từ đó suy ra nguyên hàm của \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).
Cho \(f\left( x \right) = {x^2}\ln x\) và \(g\left( x \right) = x\ln x\). Tính \(f'\left( x \right)\) và \(\int {g\left( x \right)dx} \).
Tìm:
a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)} dx\); b) \(\int {\left( {3\sqrt x - 4\sin x} \right)} {\rm{ }}dx\).
Tìm:
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\).
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t = 0 là thời điểm viên đạn được bắn lên) cho bởi v(t) = 150 - 9,8t (m/s).
Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau t = 3 giây.
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).
Cho \(F\left( u \right)\) là một nguyên hàm của hàm số \(f\left( u \right)\) trên khoảng \(K\) và \(u\left( x \right),{\rm{ x}} \in {\rm{J}}\), là hàm số có đạo hàm liên tục, \(u\left( x \right) \in K\) với mọi \({\rm{x}} \in {\rm{J}}\). Tìm \(\int {f\left( {u\left( x \right)} \right)} \cdot u'\left( x \right)dx\).
Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \) và \(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).
Tìm:
a) \(\int {\frac{{2x - 1}}{{x + 1}}} dx\);
b) \(\int {\left( {3 + 2{{\sin }^2}x} \right)} {\rm{ }}dx\).
Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {\sin ^2}\frac{x}{2}\);
b) \(y = {e^{2x}} - 2{x^5} + 5\).
a) \(\int\limits_0^3 {\left| {3 - x} \right|dx} \);
b) \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} \)
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} \).
Hàm số \(y = \log x\) là nguyên hàm của hàm số:
A. \(y = \frac{1}{x}\).
B. \(y = \frac{1}{{x\ln 10}}\).
C. \(y = \frac{{\ln 10}}{x}\).
D. \(y = \frac{1}{{x\log 10}}\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = 4{x^3} - 3{{\rm{x}}^2}\).
a) \(\int {f\left( x \right)dx} = \int {4{x^3}dx} - \int {3{{\rm{x}}^2}dx} \).
b) \(f'\left( x \right) = 12{{\rm{x}}^2} - 6{\rm{x}}\).
c) \(f'\left( x \right) = {x^4} - {x^3}\).
d) \(\int {f\left( x \right)dx} = {x^4} + {x^3} + C\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \sin x + \cos x\).
a) \(\int {f\left( x \right)dx} = \int {\sin xdx} + \int {\cos xdx} \).
b) \(f'\left( x \right) = \cos x - \sin x\).
c) \(f'\left( x \right) + f\left( x \right) = \cos x\).
d) \(\int {f\left( x \right)dx} = - \cos x + \sin x + C\).
Trong mỗi ý a), b), c), d, chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \left( {x + 2} \right)\left( {x + 1} \right)\).
a) \(f\left( x \right) = {x^2} + 3{\rm{x}} + 2\).
b) \(f'\left( x \right) = 2{\rm{x}} + 3\).
c) \(\int {f\left( x \right)dx} = \int {\left( {x + 2} \right)dx} .\int {\left( {x + 1} \right)dx} \).
d) \(\int {f\left( x \right)dx} = \frac{1}{3}{x^3} + \frac{3}{2}{x^2} + 2{\rm{x}} + C\).
Tìm nguyên hàm của các hàm số sau:
a) \(f\left( x \right) = 2\sin x\);
b) \(f\left( x \right) = \cos x + {x^3}\);
c) \(f\left( x \right) = \frac{{ - {x^4}}}{2} - 3\cos x\).
Tìm:
a) \(\int {{2^x}\ln 2dx} \);
b) \(\int {2x\cos \left( {{x^2}} \right)dx} \);
c) \(\int {{{\cos }^2}\left( {\frac{x}{2}} \right)dx} \).
Tìm \(\int {\frac{{{x^2} + 7{\rm{x}} + 12}}{{x + 3}}dx} \) trên \(\left( {0; + \infty } \right)\).
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \frac{{{x^7} + 8}}{x}\).
a) \(f\left( x \right) = {x^6} + \frac{8}{x}\).
b) \(\int {f\left( x \right)dx} = \int {{x^6}dx} - \int {\frac{8}{x}dx} \).
c) \(\int {f\left( x \right)dx} = \int {{x^6}dx} + \int {\frac{8}{x}dx} \).
d) \(\int {f\left( x \right)dx} = \frac{{{x^7}}}{7} + 8\ln \left| x \right|\).