Đề bài

Cho tam giác ABC cân tại A và một điểm M tuỳ ý thuộc đoạn thẳng BC. Chứng minh rằng tổng khoảng cách từ điểm M đến đường thẳng AB, AC là một số không đổi

Phương pháp giải

- Xét khi M trùng B, C và khi M khác B, C

- Kẻ \(MP \bot AC;MQ \bot AB\)

-Chứng minh: \(\Delta RBM\) cân tại R

-Chứng minh: MP + MQ = BS + SI = BI = CK.

Lời giải của GV Loigiaihay.com

TH1:Khi M trùng với B hay C thì tổng khoảng cách đó là BI hoặc CK

Theo bài 9.8: BI = CK

TH2: Khi M khác B, khác C

Kẻ \(MP \bot AC;MQ \bot AB\)

\( \Rightarrow \)Tổng khoảng cách từ điểm M đến đường thẳng AB, AC là: MQ + MP

Qua M kẻ \(MR // AC\); MR cắt BI tại S.

\( \Rightarrow \widehat C = \widehat {RMB}\) (2 góc đồng vị)

Mà \(\widehat C = \widehat B\)

\( \Rightarrow \widehat B = \widehat {RMB}\)

\( \Rightarrow \Delta RBM\) cân tại R

MQ là khoảng cách từ M đến RB, BS là khoảng cách từ B đến RM

Theo bài 9.8: MQ = BS

Ta có: MR // AC, MP và SI có độ dài là khoảng cách giữa hai đường thẳng đó nên MP = SI

Suy ra: MP + MQ = BS + SI = BI = CK. 

Các bài tập cùng chuyên đề

Bài 1 :

Quan sát Hình 84 và cho biết:

a) Khoảng cách từ điểm O đến đường thẳng a;

b) Khoảng cách từ điểm O đến đường thẳng b;

c) Khoảng cách từ điểm O đến đường thẳng c.

Xem lời giải >>
Bài 2 :

Cho 2 đường thẳng song song c và d. Chứng minh rằng khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c (khoảng cách đó được gọi là khoảng cách giữa hai đường thẳng song song c và d).

Xem lời giải >>
Bài 3 :

Cho 2 điểm phân biệt M, M’ ở cùng phía đối với đường thẳng d (M, M’ không thuộc d). Chứng minh rằng nếu M, M’ có cùng khoảng cách đến đường thẳng d thì MM’ song song với d.

Xem lời giải >>
Bài 4 :

Cho tam giác ABC cân tại A. Chứng minh rằng khoảng cách từ B đến đường thẳng AC bằng khoảng cách từ C đến đường thẳng AB.

Xem lời giải >>
Bài 5 :

Cho góc xOy và điểm B thuộc tia Ox, B ≠ O. Vẽ H là hình chiếu của điểm B trên đường thẳng Oy trong các trường hợp sau:

a) \(\widehat {xOy}\) là góc nhọn;

b) \(\widehat {xOy}\) là góc vuông;

c) \(\widehat {xOy}\) là góc tù.

Xem lời giải >>
Bài 6 :

Cho tam giác ABC vuông cân tại A. Một đường thẳng a đi qua A. Gọi M và N lần lượt là hình chiếu của B và C trên đường thẳng a. Chứng minh:

a) \(\widehat {ABM} = \widehat {CAN}\)

b) CN = MA;

c) Nếu a song song với BC thì MA = AN.

Xem lời giải >>
Bài 7 :

Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông.

a) Đỉnh nào cách đều hai điểm A và C?

b) Đỉnh nào cách đều hai đường thẳng AB và AD?

Xem lời giải >>