Đề bài

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x + 3}}{{x + 2}}\) bằng

  • A.

    \( - 1\)

  • B.

    \(1\)

  • C.

    \(\frac{{ - 3}}{2}\)

  • D.

    \( - 3\)

Phương pháp giải

Áp dụng quy tắc tính giới hạn đặc biệt: \(\mathop {\lim }\limits_{x \to \infty } \frac{1}{x} = 0\).

Lời giải của GV Loigiaihay.com

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x + 3}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( { - 1 + \frac{3}{x}} \right)}}{{x\left( {1 + \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 1 + \frac{3}{x}}}{{1 + \frac{2}{x}}} = \frac{{ - 1 + 0}}{{1 + 0}} =  - 1\).

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác vuông OAB với \(A = \left( {a;0} \right)\) và \(B = \left( {0;1} \right)\) như Hình 5.5. Đường cao OH có độ dài là h.

a) Tính h theo a,.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Xem lời giải >>
Bài 2 :

Tính: \(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\).

Xem lời giải >>
Bài 3 :

Cho hàm số \(f\left( x \right) = 1 + \frac{2}{{x - 1}}\) có đồ thị như Hình 5.4.

Giả sử \(\left( {{x_n}} \right)\) là dãy số sao cho \({x_n} > 1,\;{x_n} \to \; + \infty \). Tính \(f\left( {{x_n}} \right)\) và \(\mathop {{\rm{lim}}}\limits_{n \to  + \infty } f\left( {{x_n}} \right)\).

Xem lời giải >>
Bài 4 :

Tính các giới hạn sau:

a) \(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\)                                         

b) \(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x + 2}  - x} \right)\)

Xem lời giải >>
Bài 5 :

Cho hàm số \(f\left( x \right) = \sqrt {x + 1}  - \sqrt {x + 2} \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \infty \)                     

B. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 0\)             

C. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - 1\)    

D. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \frac{1}{2}\)

Xem lời giải >>
Bài 6 :

Tính \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3x + 2}}{{4x - 5}}.\)

Xem lời giải >>
Bài 7 :

Cho hàm số \(f\left( x \right) = \frac{1}{x}\,\,\left( {x \ne 0} \right)\) có đồ thị như ở Hình 7. Quan sát đồ thị đó và cho biết:

a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới giá trị nào.

b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần tới giá trị nào.

Xem lời giải >>
Bài 8 :

Một cái hồ đang chứa \(200{m^3}\) nước mặn với nồng độ muối \(10kg/{m^3}\). Người ta ngọt hóa nước trong hồ bằng cách bơm nước ngọt vào hồ với tốc độ \(2{m^3}/\)phút.

a) Viết biểu thức \(C\left( t \right)\) biểu thị nồng độ muối trong hồ sau \(t\) phút kể từ khi bắt đầu bơm.

b) Tìm giới hạn \(\mathop {\lim }\limits_{t \to  + \infty } C\left( t \right)\) và giải thích ý nghĩa.

Xem lời giải >>
Bài 9 :

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 - 3{x^2}}}{{{x^2} + 2x}}\);    

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x + 1}}\).

Xem lời giải >>
Bài 10 :

Cho hàm số \(f\left( x \right) = \frac{1}{x}\) có đồ thị như Hình 3.

a) Tìm các giá trị còn thiếu trong bảng sau:

Từ đồ thị và bảng trên, nêu nhận xét về giá trị \(f\left( x \right)\) khi \(x\) càng lớn (dần tới \( + \infty \))?

b) Tìm các giá trị còn thiếu trong bảng sau:

Từ đồ thị và bảng trên, nêu nhận xét về giá trị \(f\left( x \right)\) khi \(x\) càng bé (dần tới \( - \infty \))?

Xem lời giải >>
Bài 11 :

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x + 3}}{{2x}}\);      

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3x + 1}}\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\).

Xem lời giải >>
Bài 12 :

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2{\rm{x}} - 1}}{x}\) bằng: 

A. 2.                                            

B. ‒1.                                         

C. 0.                                             

D. 1.

Xem lời giải >>
Bài 13 :

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x + 2}}{{x + 1}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{{x^2}}}\).

Xem lời giải >>
Bài 14 :

Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7\).  Tìm \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}\)

Xem lời giải >>
Bài 15 :

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{x}{{x + 4}}\);

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2{x^2} + 1}}{{{{\left( {2x + 1} \right)}^2}}}\);

c) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{3x + 1}}{{\sqrt {{x^2} - 2x} }}\);

d) \(\mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} + 2x} } \right)\).

Xem lời giải >>
Bài 16 :

Biết rằng \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2,\mathop {\lim }\limits_{x \to  + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4\). Giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}}\) bằng

A. \( - 1\).

B. 0.

C. \(\frac{1}{2}\).

D. \( - \frac{1}{2}\).

Xem lời giải >>
Bài 17 :

Biết rằng \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax}  + x}} = 3\). Giá trị của a là

A. \(\frac{3}{4}\).

B. 6.

C. \(\frac{3}{2}\).

D. 3.

Xem lời giải >>
Bài 18 :

Với \(c\), \(k\) là các hằng số và \(k\) nguyên dương thì

A. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} = 0\)                          

B. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} =  + \infty \)

C. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} =  - \infty \)               

D. \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} =  + \infty \) hoặc \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} =  - \infty \)

Xem lời giải >>
Bài 19 :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Phát biểu nào sau đây là đúng?

A. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to  + \infty \), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\).

B. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} < a\) và \({x_n} \to  + \infty \), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\).

C. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\).

D. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to L\), ta có \(f\left( {{x_n}} \right) \to  + \infty \) thì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = L\).

Xem lời giải >>
Bài 20 :

Cho hàm số \(f\left( x \right)\) thoả mãn \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2022\). Tính \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{xf\left( x \right)}}{{x + 1}}\).

Xem lời giải >>
Bài 21 :

\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\) bằng:

A. \(2\)                                    

B. \(1\)                          

C. \( + \infty \)              

D. \( - \infty \)

Xem lời giải >>
Bài 22 :

Một bể chứa 5000\(l\) nước tinh khiết. Nước muối có chứa 30 gam muối trên mỗi lít nước được bơm vào bể với tốc độ 25\(l\)/phút.

a) Chứng minh rằng nồng độ muối của nước trong bể sau \(t\) phút (tính bằng khối lượng muối chia thể tích nước trong bể, đơn vị: g/\(l\)) là \(C\left( t \right) = \frac{{30t}}{{200 + t}}\).

b) Tính \(\mathop {\lim }\limits_{t \to  + \infty } C\left( t \right)\) và cho biết ý nghĩa của kết quả đó.

Xem lời giải >>
Bài 23 :

Cho hàm số \(f\left( x \right) = \frac{{\sqrt {{x^2} - x + 2} }}{x}\). Tính

a) \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\).                             

b) \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right)\).

Xem lời giải >>
Bài 24 :

Cho hàm số \(g\left( x \right) = \sqrt {{x^2} + 2x}  - \sqrt {{x^2} - 1}  - 2m\) với m là tham số. Biết \(\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) = 0\), tìm giá trị của m.

Xem lời giải >>
Bài 25 :

Cho hàm số \(f\left( x \right) = \frac{{{{\sin }^2}x}}{{{x^2}}}\). Chứng minh rằng \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 0\).

Xem lời giải >>
Bài 26 :

Một đơn vị sản xuất hàng thủ công ước tính chi phí để sản xuất x đơn vị sản phẩm là \(C\left( x \right) = 2x + 55\) (triệu đồng).

a) Tìm hàm số f(x) biểu thị chi phí trung bình để sản xuất mỗi đơn vị sản phẩm.

b) Tính \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\). Giới hạn này có ý nghĩa gì?

Xem lời giải >>
Bài 27 :

Biết \(\mathop {\lim }\limits_{n \to  + \infty } \frac{{2{n^2} + n - 1}}{{a{n^2} + 1}} = 1\) với a là tham số. Giá trị của \({a^2} - 2a\) là

A.\( - 1\)                                                     

B. 0                     

C. 2                                                  

D. Không xác định

Xem lời giải >>
Bài 28 :

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = m + 1\). Biết giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại. Giá trị của m

A. \(m = 1\)                                      

B. \(m = 2\)                   

C. \(m = 3\)                                      

D. Không tồn tại m.

Xem lời giải >>
Bài 29 :

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 2}  - x}}{{x}}\) là

A. \( + \infty \)              

B. 0                     

C. - 2                   

D. Không tồn tại.

Xem lời giải >>
Bài 30 :

Tìm a là số thực thỏa mãn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{2{x^2} + 1}}{{{x^2} + 2x + 3}} + {a^2} + 3a} \right) = 0\).

Xem lời giải >>