Đề bài

Với điều kiện \(\left\{ \begin{array}{l}ac\left( {{b^2} - 4ac} \right) > 0\\ab < 0\end{array} \right.\)  thì đồ thị hàm số \(y = a{x^4} + b{x^2} + c\) cắt trục hoành tại bao nhiêu điểm?

  • A.

    $4$     

  • B.

    $3$     

  • C.

    $1$     

  • D.

    $2$

Phương pháp giải

+) Tính \(y'\) suy ra số điểm cực trị của hàm số.

+) Xét vị trí các điểm cực trị của đồ thị hàm số so với trục hoành và suy ra số giao điểm của đồ thị hàm số với trục hoành.

Lời giải của GV Loigiaihay.com

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = a{x^4} + b{x^2} + c\) và đường thẳng $y = 0.$

Ta có: \(y' = 4a{x^3} + 2bx = 0 \Leftrightarrow 2x\left( {2a{x^2} + b} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} =  - \dfrac{b}{{2a}}\end{array} \right.\)

Ta có \(ab < 0 \Rightarrow \) a, b trái dấu \( \Rightarrow  - \dfrac{b}{{2a}} > 0 \Rightarrow \) phương trình $y' = 0$  có $3$ nghiệm phân biệt hay đồ thị hàm số có $3$ điểm cực trị.

+ Với \(x = 0 \Rightarrow y = c \Rightarrow A\left( {0;c} \right)\)

+ Với \({x^2} =  - \dfrac{b}{{2a}} \Rightarrow x =  \pm \sqrt { - \dfrac{b}{{2a}}} \) \( \Rightarrow y = \dfrac{{ - a\left( {{b^2} - 4ac} \right)}}{{4{a^2}}}\)

\( \Rightarrow B\left( { - \sqrt { - \dfrac{b}{{2a}}} ;\dfrac{{ - a\left( {{b^2} - 4ac} \right)}}{{4{a^2}}}} \right),C\left( {\sqrt { - \dfrac{b}{{2a}}} ;\dfrac{{ - a\left( {{b^2} - 4ac} \right)}}{{4{a^2}}}} \right)\)

Ta có \(ac\left( {{b^2} - 4ac} \right) > 0\) \( \Leftrightarrow \dfrac{{ - a\left( {{b^2} - 4ac} \right)}}{{4{a^2}}}.c < 0\) \( \Rightarrow {y_B}.{y_A} < 0\)

\( \Rightarrow \) Các điểm cực đại và cực tiểu nằm khác phía so với trục hoành

\( \Rightarrow \) Đồ thị hàm số \(y = a{x^4} + b{x^2} + c\) cắt trục hoành tại \(4\) điểm phân biệt.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Tìm giá trị nhỏ nhất của hàm số \(y = \left| {\sin x + \cos x + \tan x + \cot x + \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}}} \right|\)

Xem lời giải >>
Bài 2 :

Biết rằng đồ thị hàm số bậc 4: \(y = f\left( x \right)\) được cho như hình vẽ sau:

Tìm số giao điểm của đồ thị hàm số \(y = g\left( x \right) = {\left[ {f'\left( x \right)} \right]^2} - f\left( x \right).f''\left( x \right)\) và trục $Ox.$

Xem lời giải >>
Bài 3 :

Cho hàm số $f(x) = {x^3} + a{x^2} + bx - 2$ thỏa mãn $\left\{ \begin{array}{l}a + b > 1\\3 + 2a + b < 0\end{array} \right.$. Số điểm cực trị của hàm số $y = \left| {f\left( {\left| x \right|} \right)} \right|$ bằng:

Xem lời giải >>
Bài 4 :

Cho hàm số $y = f(x)$ có đồ thị hàm số $f'(x)$ như hình vẽ. Hàm số $y = f(1 - x) + \dfrac{{{x^2}}}{2} - x$ nghịch biến trên khoảng

Xem lời giải >>
Bài 5 :

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = {x^8} + \left( {m - 2} \right){x^5} - \left( {{m^2} - 4} \right){x^4} + 1\) đạt cực tiểu tại \(x = 0\)?

Xem lời giải >>
Bài 6 :

Cho hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đồ thị \(\left( C \right).\) Gọi \(I\) là giao điểm của hai tiệm cận của \(\left( C \right).\) Xét tam giác đều \(ABI\) có hai đỉnh \(A,\;B\) thuộc \(\left( C \right),\) đoạn thẳng \(AB\) có độ dài bằng:

Xem lời giải >>
Bài 7 :

Cho hàm số \(y = \dfrac{1}{6}{x^4} - \dfrac{7}{3}{x^2}\) có đồ thị hàm số \(\left( C \right).\) Có bao nhiêu điểm \(A\) thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(A\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(M\left( {{x_1};\;{y_1}} \right),\;N\left( {{x_2};\;{y_2}} \right)\;\;\left( {M,\;N \ne A} \right)\) thỏa mãn \({y_1} - {y_2} = 4\left( {{x_1} - {x_2}} \right)?\) 

Xem lời giải >>
Bài 8 :

Cho hai hàm số \(y = f\left( x \right),\;y = g\left( x \right).\) Hai hàm số \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) có đồ thị hàm như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số \(y = g'\left( x \right).\) Hàm số \(h\left( x \right) = f\left( {x + 6} \right) - g\left( {2x + \dfrac{5}{2}} \right)\) đồng biến trên khoảng nào dưới đây?

Xem lời giải >>
Bài 9 :

Cho hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x\). Đặt \({f^k}\left( x \right) = f\left( {{f^{k - 1}}\left( x \right)} \right)\) (với $k$ là số tự nhiên lớn hơn $1$). Tính số nghiệm của phương trình \({f^8}\left( x \right) = 0\)

Xem lời giải >>
Bài 10 :

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 7} \right)\left( {{x^2} - 9} \right),\,\forall \,x \in \,\mathbb{R}\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {\left| {{x^3} + 5x} \right| + m} \right)\) có ít nhất 3 điểm cực trị?

Xem lời giải >>