Đề bài

Tìm các giá trị của tham số m để:

a) Hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\).

b) Tam thức bậc hai \(y =  - {x^2} + mx - 1\) có dấu không phụ thuộc vào x.

c) Hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \) có tập xác định chỉ gồm một phần tử.

Lời giải của GV Loigiaihay.com

a) Xét hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\).

+) Với m = 0 thì hàm số có dạng \(y = \frac{1}{{\sqrt 5 }}\) có tập xác định là \(\mathbb{R}\). Do đó m = 0 thỏa mãn.

+) Với m ≠ 0, hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\) khi và chỉ khi \(m{x^2} - 2m{\rm{x}} + 5 > 0,\forall x \in \mathbb{R}\).

Ta có: \(m{x^2} - 2m{\rm{x}} + 5 > 0,\forall x \in \mathbb{R}\)\( \Leftrightarrow m > 0\) và \(\Delta ' = {m^2} - 5m < 0\) \( \Leftrightarrow m > 0\) và \(0 < m < 5\) \( \Leftrightarrow 0 < m < 5\).

Kết hợp các điều kiện, với \(m \in {\rm{[}}0;5)\) thì hàm số \(y = \frac{1}{{\sqrt {m{x^2} - 2mx + 5} }}\) có tập xác định \(\mathbb{R}\).

b) Tam thức bậc hai \(y =  - {x^2} + mx - 1\) có a = -1 < 0.

Khi đó \(y =  - {x^2} + mx - 1\) có dấu không phụ thuộc vào x khi và chỉ khi \(y =  - {x^2} + mx - 1\) < 0 \(\forall x \in \mathbb{R}\).

\( \Leftrightarrow \)\(\Delta  = {m^2} - 4 < 0 \Leftrightarrow  - 2 < m < 2\).

Vậy với \(m \in ( - 2;2)\) thì Tam thức bậc hai \(y =  - {x^2} + mx - 1\) có dấu không phụ thuộc vào x.

c) Hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \)có tập xác định chỉ gồm một phần tử khi và chỉ khi

\( - 2{x^2} + mx - m - 6 = 0\) có nghiệm kép \( \Leftrightarrow \Delta  = {m^2} - 8(m + 6) = 0\).

\( \Leftrightarrow {m^2} - 8m - 48 = 0 \Leftrightarrow m =  - 4\)hoặc m = 12.

Vậy với \(m \in {\rm{\{ }} - 4;12{\rm{\} }}\) thì hàm số \(y = \sqrt { - 2{x^2} + mx - m - 6} \) có tập xác định chỉ gồm một phần tử.

Các bài tập cùng chuyên đề

Bài 1 :

Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị:

a) \({x^2} + 2x + 2 > 0\)

b) \( - 3{x^2} + 2x - 1 > 0\)

Xem lời giải >>
Bài 2 :

Cho bất phương trình \({x^2} - 4x + 3 > 0\left( 2 \right)\).

Quan sát parabol \(\left( P \right):{x^2} - 4x + 3\) ở Hình 26 và cho biết:

a) Bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía nào của trục hoành.

b) Phần parabol (P) nằm phía trên trục hoành ứng với những giá trị nào của x.

Xem lời giải >>
Bài 3 :

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 2x + 4 \le 0\)

b) \( - {x^2} + 6x - 9 \ge 0\)

Xem lời giải >>
Bài 4 :

a) Lập bảng xét dấu của tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\)

b) Giải bất phương trình \({x^2} - x - 2 > 0\)

Xem lời giải >>
Bài 5 :

Giải các bất phương trình bậc hai sau:

a) \(2{x^2} - 5x + 3 > 0\)

b) \( - {x^2} - 2x + 8 \le 0\)

c) \(4{x^2} - 12x + 9 < 0\)

d) \( - 3{x^2} + 7x - 4 \ge 0\)

Xem lời giải >>
Bài 6 :

Tìm m để phương trình \(2{x^2} + \left( {m + 1} \right)x + m - 8 = 0\) có nghiệm.

Xem lời giải >>
Bài 7 :

Giải các bất phương trình sau:

a) \(2{x^2} + 3x + 1 \ge 0\)

b) \( - 3{x^2} + x + 1 > 0\)

c) \(4{x^2} + 4x + 1 \ge 0\)

d) \( - 16{x^2} + 8x - 1 < 0\)

e) \(2{x^2} + x + 3 < 0\)

g) \( - 3{x^2} + 4x - 5 < 0\)

Xem lời giải >>
Bài 8 :

Tập nghiệm của bất phương trình \({x^2} - 3x + 2 < 0\) là:

Xem lời giải >>
Bài 9 :

Tập nghiệm của bất phương trình \({x^2}-{\rm{ }}1{\rm{ }} > {\rm{ }}0\) là:

Xem lời giải >>
Bài 10 :

Tập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là:

A. \(\left[ { - 3;6} \right]\)

B. \(\left( { - 3;6} \right)\)

C. \(x \in \left( { - \infty ; - 3} \right) \cup \left( {6; + \infty } \right)\)

D. \(x \in \left( { - \infty ; - 3} \right] \cup \left[ {6; + \infty } \right)\)

Xem lời giải >>
Bài 11 :

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 8x + 5 > 0\)

b) \( - 2{x^2} - x + 3 \le 0\)

c) \(25{x^2} - 10x + 1 < 0\)

d) \( - 4{x^2} + 5x + 9 \ge 0\)

Xem lời giải >>
Bài 12 :

Tìm giao các tập nghiệm của hai bất phương trình \( - 3{x^2} + 7x + 10 \ge 0\) và \( - 2{x^2} - 9x + 11 > 0\).

Xem lời giải >>
Bài 13 :

Tìm \(m\) để phương trình \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm.

Xem lời giải >>
Bài 14 :

Tập nghiệm của bất phương trình \( - 5{x^2} + 6x + 11 \le 0\) là:

A. \(\left[ { - 1;\frac{{11}}{5}} \right]\)

B. \(\left( { - 1;\frac{{11}}{5}} \right)\)

C. \(x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{{11}}{5}; + \infty } \right)\)

D. \(x \in \left( { - \infty ; - 1} \right] \cup \left[ {\frac{{11}}{5}; + \infty } \right)\)

Xem lời giải >>
Bài 15 :

Giải các bất phương trình bậc hai sau:

a) \(4{x^2} - 9x + 5 \le 0\)

b) \( - 3{x^2} - x + 4 > 0\)

c) \(36{x^2} - 12x + 1 > 0\)

d) \( - 7{x^2} + 5x + 2 < 0\)

Xem lời giải >>
Bài 16 :

Giải các bất phương trình sau:

a) \( - 5{x^2} + x - 1 \le 0\)

b) \({x^2} - 8x + 16 \le 0\)

c) \({x^2} - x + 6 > 0\)

Xem lời giải >>
Bài 17 :

Giải các bất phương trình bậc hai:

a) \({x^2} - 1 \ge 0\) 

b) \({x^2} - 2x - 1 < 0\)

c) \( - 3{x^2} + 12x + 1 \le 0\)   

d) \(5{x^2} + x + 1 \ge 0\)

Xem lời giải >>
Bài 18 :

Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi

A. \(m =  - 1.\)

B. \(m =  - 2.\)

C. \(m = 2.\)

D. \(m > 2.\)

Xem lời giải >>
Bài 19 :

Giải các bất phương trình sau:

a) \(2{x^2} - 3x + 1 > 0\)

b) \({x^2} + 5x + 4 < 0\)

c) \( - 3{x^2} + 12x - 12 \ge 0\)

d) \(2{x^2} + 2x + 1 < 0.\)

Xem lời giải >>
Bài 20 :

Hãy giải bất phương trình lập được trong hoạt động khám phá và tìm giá bán gạo sao cho cửa hàng có lãi.

Xem lời giải >>
Bài 21 :

Giải các bất phương trình bậc hai sau:

a) \(15{x^2} + 7x - 2 \le 0\)

b) \( - 2{x^2} + x - 3 < 0\)

Xem lời giải >>
Bài 22 :

Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trình bậc hai sau đây:

 

Xem lời giải >>
Bài 23 :

Giải các bất phương trình bậc hai sau:

a) \(2{x^2} - 15x + 28 \ge 0\)

b) \( - 2{x^2} + 19x + 255 > 0\)

c) \(12{x^2} < 12x - 8\)

d) \({x^2} + x - 1 \ge 5{x^2} - 3x\)

Xem lời giải >>
Bài 24 :

Giải các bất phương trình sau:

a) \(7{x^2} - 19x - 6 \ge 0\)

b) \( - 6{x^2} + 11x > 10\)

c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1\)

d) \({x^2} - 10x + 25 \le 0\)

Xem lời giải >>
Bài 25 :

Dựa vào đồ thị của hàm số bậc hai được cho, hãy giải các bất phương trình sau:

 

Xem lời giải >>
Bài 26 :

Số giá trị nguyên của tham số \(m\) trên đoạn \(\left[ { - 10;10} \right]\) để bất phương trình \(m{x^2} - 2mx + 2m - 1 \le 0\) thỏa mãn với mọi \(x \in \mathbb{R}\) là:

Xem lời giải >>
Bài 27 :

Giải các bất phương trình sau:

a) \(3{x^2} - 36x + 108 > 0\)   

b) \( - {x^2} + 2x - 2 \ge 0\)

c) \({x^4} - 3{x^2} + 2 \le 0\)   

d) \(\frac{1}{{{x^2} - x + 1}} \le \frac{1}{{2{x^2} + x + 2}}\)

Xem lời giải >>
Bài 28 :

Tìm các giá trị của tham số m để phương trình \({x^2} - 2(m - 1)x + 4{m^2} - m = 0\) (1)

a) Có hai nghiệm phân biệt.

b) Có hai nghiệm trái dấu.

Xem lời giải >>
Bài 29 :

Tìm các giá trị của tham số m để:

a) \( - {x^2} + (m + 1)x - 2m + 1 \le 0,\forall x \in \mathbb{R}\)

b) \({x^2} - (2m + 1)x + m + 2 > 0,\forall x \in \mathbb{R}\)

Xem lời giải >>
Bài 30 :

Tập nghiệm của bất phương trình \({x^2} - 4x + 3 < 0\) là:

A. \((1;3)\)

B. \(( - \infty ;1) \cup {\rm{[}}3; + \infty )\)

C. \({\rm{[}}1;3]\)

D. \(( - \infty ;1] \cup {\rm{[}}4; + \infty )\)

Xem lời giải >>