Một hộp chứa 50 tấm thẻ cùng loại được đánh số từ 1 đến 50. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi A là biến cố “Số ghi trên thẻ được chọn chia hết cho 4”, B là biến cố “Số ghi trên thẻ được chọn chia hết cho 6”.
a) Giang nói AB là biến cố “Số ghi trên thẻ được chọn chia hết cho 24”. Giang nói như vậy đúng hay sai? Tại sao?
b) Hai biến cố A và B có độc lập không? Tại sao?
a) Sử dụng kiến thức về biến cố giao: Cho hai biến cố A và B. Biến cố “Cả A và B cùng xảy ra”, kí hiệu AB hoặc \(A \cap B\) được gọi là biến cố giao của A và B.
b) Sử dụng kiến thức về biến cố độc lập: Hai biến cố A và B gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng tới xác suất xảy ra của biến cố kia.
Sử dụng quy tắc nhân của hai biến cố độc lập: Nếu hai biến cố A và B độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).
a) Giang nói sai vì nếu Giang chọn được tấm thẻ ghi số 12 thì cả hai biến cố A và B đều xảy ra nhưng 12 không chia hết cho 24.
b) Các số chia hết cho 4 từ 1 đến 50 là: 4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48 nên số kết quả thuận lợi của biến cố A là 12.
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{12}}{{50}} = \frac{6}{{25}}\)
Các số chia hết cho 6 từ 1 đến 50 là: 6; 12; 18; 24; 30; 36; 42; 48 nên số kết quả thuận lợi của biến cố B là 8.
Xác suất của biến cố B là: \(P\left( B \right) = \frac{8}{{50}} = \frac{4}{{25}}\)
Biến cố AB là: “Số ghi trên thẻ được chọn chia hết cho 12”. Do đó, số kết quả thuận lợi của biến cố AB là 4.
Xác suất của biến cố AB là: \(P\left( {AB} \right) = \frac{4}{{50}} = \frac{2}{{25}}\)
Vì \(P\left( A \right).P\left( B \right) \ne P\left( {AB} \right)\) nên hai biến cố A và B không độc lập với nhau.
Các bài tập cùng chuyên đề
Cho \(A\) và \(B\) là hai biến cố thoả mãn \(P\left( A \right) = 0,5;P\left( B \right) = 0,7\) và \(P\left( {A \cup B} \right) = 0,8\).
a) Tính xác suất của các biến cố \(AB,\bar AB\) và \(\bar A\bar B\).
b) Hai biến cố \(A\) và \(B\) có độc lập hay không?
Một hộp chứa 4 bút xanh, 1 bút đen và 1 bút đỏ. Các cây bút có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên 3 cây bút từ hộp. Gọi A là biến cố “Có 1 cây bút đỏ trong 3 cây bút được lấy ra”. Gọi B là biến cố “Có 1 cây bút đen trong 3 cây bút được lấy ra”.
a) Hãy tìm một biến cố xung khắc với biến cố A nhưng không xung khắc với biến cố B.
b) Tính xác suất của các biến cố A, B và AB.
Hộp thứ nhất chứa 4 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 1 viên bi xanh và 3 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên từ mỗi hộp 2 viên bi.
Gọi A là biến cố “Cả 2 viên bi lấy ra từ hộp thứ nhất có cùng màu”, B là biến cố “Cả 2 viên bi lấy ra từ hộp thứ hai có cùng màu”.
a) Minh nói AB là biến cố “Trong 4 viên bi lấy ra có 2 viên bi xanh, 2 viên bi đỏ”. Minh nói đúng hay sai? Tại sao?
b) So sánh P(AB) và P(A)P(B).
c) Hãy tìm một biến cố khác rỗng, xung khắc với cả biến cố A và biến cố B.