Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{{x\sin x}}{{1 - \tan x}}\);

b) \(y = \cos \sqrt {{x^2} - x + 1} \);

c) \(y = {\sin ^2}3x\);

d) \(y = {\cos ^2}\left( {\cos 3x} \right)\).

Phương pháp giải

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính:

a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {uv} \right)' = u'v + uv'\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)

b) \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\), \(\left( {\sqrt {u\left( x \right)} } \right)' = \frac{{u'\left( x \right)}}{{2\sqrt {u\left( x \right)} }}\)

c) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\),\(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

d) \(\left( {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right)' = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]'\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right),\) \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

Lời giải của GV Loigiaihay.com

a) \(y' \) \(= {\left( {\frac{{x\sin x}}{{1 - \tan x}}} \right)'} \) \(= \frac{{\left( {x\sin x} \right)'\left( {1 - \tan x} \right) - \left( {x\sin x} \right)\left( {1 - \tan x} \right)'}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\left( {\sin x + x\cos x} \right)\left( {1 - \tan x} \right) + \left( {x\sin x} \right)\frac{1}{{{{\cos }^2}x}}}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\sin x + x\cos x - \sin x\tan x - x\sin x + \frac{{x\sin x}}{{{{\cos }^2}x}}}}{{{{\left( {1 - \tan x} \right)}^2}}}\) \(= \frac{{\sin x + x\cos x - \sin x\tan x - x\sin x\left( {1 - \frac{1}{{{{\cos }^2}x}}} \right)}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\sin x + x\cos x - \sin x\tan x + x\sin x{{\tan }^2}x}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

b) \(y' \) \(= {\left( {\cos \sqrt {{x^2} - x + 1} } \right)'} \) \(= - \left( {\sqrt {{x^2} - x + 1} } \right)'\sin \sqrt {{x^2} - x + 1} \) \(= - \frac{{\left( {{x^2} - x + 1} \right)'}}{{2\sqrt {{x^2} - x + 1} }}\sin \sqrt {{x^2} - x + 1} \)

\(= - \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\sin \sqrt {{x^2} - x + 1} \)

c) \(y' \) \(= {\left( {{{\sin }^2}3x} \right)'} \) \(= 2\sin 3x\left( {\sin 3x} \right)' \) \(= 6\sin 3x\cos 3x \) \(= 3\sin 6x\)

d) \(y' \) \(= {\left[ {{{\cos }^2}\left( {\cos 3x} \right)} \right]'} \) \(= 2\cos \left( {\cos 3x} \right)\left[ {\cos \left( {\cos 3x} \right)} \right]'\)\(= - 2\cos \left( {\cos 3x} \right)\sin \left( {\cos 3x} \right)\left( {\cos 3x} \right)' \) \(= 6\cos \left( {\cos 3x} \right)\sin \left( {\cos 3x} \right)\sin 3x\)

\(= 3\sin \left( {2\cos 3x} \right)\sin 3x\)

Các bài tập cùng chuyên đề

Bài 1 :

Tính đạo hàm của hàm số \(y = \tan x\) tại \(x = \frac{{3\pi }}{4}\).

Xem lời giải >>
Bài 2 :

Tính đạo hàm của các hàm số sau:

a) \(y = \sin 3x\);                                          

b) \(y = {\cos ^3}2x\);

c) \(y = {\tan ^2}x\);                                      

d) \(y = \cot \left( {4 - {x^2}} \right)\).

Xem lời giải >>
Bài 3 :

Tính đạo hàm của hàm số \(y = 2{\tan ^2}x + 3\cot \left( {\frac{\pi }{3} - 2x} \right).\)

Xem lời giải >>
Bài 4 :

a) Bằng cách viết \(y = \tan x = \frac{{\sin x}}{{\cos x}}\,\,\,\left( {x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \tan x.\)

b) Sử dụng đẳng thức \(\cot x = \tan \left( {\frac{\pi }{2} - x} \right)\) với \(x \ne k\pi \left( {k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \cot x.\)

Xem lời giải >>
Bài 5 :

Tính đạo hàm của hàm số \(y = 2\cos \left( {\frac{\pi }{4} - 2x} \right).\)

Xem lời giải >>
Bài 6 :

Bằng cách viết \(y = \cos x = \sin \left( {\frac{\pi }{2} - x} \right),\) tính đạo hàm của hàm số \(y = \cos x.\)

Xem lời giải >>
Bài 7 :

Tính đạo hàm của hàm số \(y = \sin \left( {\frac{\pi }{3} - 3x} \right).\)

Xem lời giải >>
Bài 8 :

Tính đạo hàm của các hàm số sau:

a) \(y = x{\sin ^2}x;\)                                

b) \(y = {\cos ^2}x + \sin 2x;\)

c) \(y = \sin 3x - 3\sin x;\)                          

d) \(y = \tan x + \cot x.\)

Xem lời giải >>
Bài 9 :

Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {3x - \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f'\left( x \right)} \right| \le 6\) với mọi x.

Xem lời giải >>
Bài 10 :

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{x}{{\sin x - \cos x}}\);

b) \(y = \frac{{\sin x}}{x}\);

c) \(y = \sin x - \frac{1}{3}{\sin ^3}x;\)

d) \(y = \cos \left( {2\sin x} \right)\).

Xem lời giải >>
Bài 11 :

Đạo hàm của hàm số \(y = x{\sin ^2}x\) là

A. \(y' = {\sin ^2}x + 2x\sin x\).

B. \(y' = {\sin ^2}x + x\sin 2x\)

C. \(y' = {\sin ^2}x + 2x\cos x\).

D. \(y' = {\sin ^2}x + x\cos 2x\)

Xem lời giải >>
Bài 12 :

Cho \(f\left( x \right) = x\sin x\) và \(g\left( x \right) = \frac{{\cos x}}{x}\). Giá trị \(\frac{{f'\left( 1 \right)}}{{g'\left( 1 \right)}}\) là

A. \( - 1\).                               

B. \(\sin 1 + \cos 1\).                  

C. \(1\).                                 

D. \( - \sin 1 - \cos 1\).

Xem lời giải >>