Vị trí chuyển động của một vật trên đường thẳng được biểu diễn bởi công thức \(s\left( t \right) = 3{t^3} + 5t + 2\), trong đó t là thời gian tính bằng giây và s tính bằng mét. Tính vận tốc và gia tốc của vật đó khi \(t = 1\).
Sử dụng kiến thức về ý nghĩa của đạo hàm và đạo hàm cấp hai:
+ Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường đi chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).
+ Đạo hàm cấp hai \(f''\left( t \right)\) là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình \(s = f\left( t \right)\).
Ta có: \(s'\left( t \right) = 9{t^2} + 5,s''\left( t \right) = 18t\)
Vận tốc của chuyển động tại thời điểm \(t = 1\) là: \(s'\left( 1 \right) = {9.1^2} + 5 = 14\left( {m/s} \right)\)
Gia tốc của chuyển động tại thời điểm \(t = 1\) là: \(s''\left( 1 \right) = 18.1 = 18\left( {m/{s^2}} \right)\)
Các bài tập cùng chuyên đề
Hàm số \(y = \frac{1}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{2}\).
B. \(y''\left( 1 \right) = - \frac{1}{4}\).
C. \(y''\left( 1 \right) = 4\).
D. \(y''\left( 1 \right) = \frac{1}{4}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^3} - 4{x^2} + 2x - 3\);
b) \(y = {x^2}{e^x}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^2} - x\);
b) \(y = \cos x\).
Một hòn sỏi rơi tự do có quãng đường rơi tính theo thời gian \(t\) là \(s\left( t \right) = 4,9{t^2}\), trong đó \(s\) tính bằng mét và \(t\) tính bằng giây. Tính gia tốc rơi của hòn sỏi lúc \(t = 3\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = 2{x^4} - 5{x^2} + 3\);
b) \(y = x{e^x}\).
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x{e^{2x}};\)
b) \(y = \ln \left( {2x + 3} \right).\)
Cho hàm số \(f\left( x \right) = {x^2}{e^x}.\) Tính \(f''\left( 0 \right).\)
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \ln \left( {x + 1} \right);\)
b) \(y = \tan 2x.\)
Cho hàm số \(P\left( x \right) = a{x^2} + bx + 3\) (a, b là hằng số). Tìm a, b biết \(P'\left( 1 \right) = 0\) và \(P''\left( 1 \right) = - 2.\)
Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {x + \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.
Cho hàm số \(f(x) = \frac{{x + 1}}{{x - 1}}\). Tính \(f''(0)\).
Cho hàm số \(f(x)\) thoả mãn \(f(1) = 2\) và \(f'(x) = {x^2}f(x)\) với mọi \(x\). Tính \(f''(1)\).
Nếu \(f(x) = {\sin ^2}x + x{e^{2x}}\) thì \(f''(0)\) bằng
A. 4.
B. 5.
C. 6.
D. 0.
Tìm đạo hàm cấp hai của hàm số \(y = \sin 3x\).
Xét hàm số \(y = {x^3} - 4{x^2} + 5\).
a) Tìm \(y'\).
b) Tìm đạo hàm của hàm số \(y'\).
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = \frac{1}{{2x + 3}}\)
b) \(y = {\log _3}x\)
c) \(y = {2^x}\)
Tìm đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 3{x^2} - 4x + 5\) tại điểm \({x_0} = - 2\)
b) \(y = {\log _3}(2x + 1)\) tại điểm \({x_0} = 3\)
c) \(y = {e^{4x + 3}}\) tại điểm \({x_0} = 1\)
d) \(y = \sin \left( {2x + \frac{\pi }{3}} \right)\) tại điểm \({x_0} = \frac{\pi }{6}\)
e) \(y = \cos \left( {3x - \frac{\pi }{6}} \right)\) tại điểm \({x_0} = 0\).
Một vật rơi tự do theo phương thẳng đứng có phương trình \(s = \frac{1}{2}g{t^2}\), trong đó g là gia tốc rơi tự do, \(g \approx 9,8m/{s^2}\).
a) Tính vận tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\).
b) Tính gia tốc tức thời của vật tại thời điểm \({t_0} = 2(s)\).
Tính đạo hàm cấp hai của mỗi hàm số sau:
a) \(y = 2{x^4} - 3{x^3} + 5{x^2}\)
b) \(y = \frac{2}{{3 - x}}\)
c) \(y = \sin 2x\cos x\)
d) \(y = {e^{ - 2x + 3}}\)
e) \(y = \ln (x + 1)\)
f) \(y = \ln ({e^x} + 1)\)
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x\sin 2x\);
b) \(y = {\cos ^2}x\);
c) \(y = {x^4} - 3{x^3} + {x^2} - 1\).
Một chất điểm chuyển động thẳng có phương trình \(s = 100 + 2t - {t^2}\) trong đó thời gian được tính bằng giây và s được tính bằng mét.
a) Tại thời điểm nào chất điểm có vận tốc bằng 0?
b) Tìm vận tốc và gia tốc của chất điểm tại thời điểm \(t = 3s\).
Một chuyển động thẳng xác định bởi phương trình \(s\left( t \right) = - 2{t^3} + 75t + 3\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm \(t = 3\).
Hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{4}\)
B. \(y''\left( 1 \right) = - \frac{1}{4}\)
C. \(y''\left( 1 \right) = \frac{1}{2}\)
D. \(y''\left( 1 \right) = - \frac{1}{2}\)
Cho hai hàm số \(f\left( x \right) = 3{x^3} - 3{x^2} + 6x - 1\) và \(g\left( x \right) = {x^3} + {x^2} - 2\). Bất phương trình \(f''\left( x \right) - f'\left( x \right) + g'\left( x \right) - 8 \ge 0\) có tập nghiệm là
A. \(\left( {1;\frac{{10}}{3}} \right)\)
B. \(\left( { - \infty ;1} \right] \cup \left[ {\frac{{10}}{3}; + \infty } \right)\)
C. \(\left[ {1;\frac{{10}}{3}} \right]\)
D. \(\left( { - \infty ;1} \right) \cup \left( {\frac{{10}}{3}; + \infty } \right)\)
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \frac{{x - 1}}{{x + 2}}\);
b) \(y = \sqrt {3x + 2} \);
c) \(y = x.{e^{2x}}\).
Gia tốc tức thời của chuyển động \(s = f\left( t \right)\) tại thời điểm \({t_0}\) là:
A. \(f\left( {{t_0}} \right).\)
B. \(f''\left( {{t_0}} \right).\)
C. \(f'\left( {{t_0}} \right).\)
D. \( - f'\left( {{t_0}} \right).\)
Cho hàm số \(f\left( x \right) = {e^{ - x}}.\) Khi đó, \(f''\left( x \right)\) bằng:
A. \({e^{ - x}}.\)
B. \( - {e^{ - x}}.\)
C. \( - {e^x}.\)
D. \({e^x}.\)
Cho hàm số \(f\left( x \right) = \ln \left( {3x} \right).\) Khi đó, \(f''\left( x \right)\) bằng:
A. \( - \frac{1}{{9{x^2}}}.\)
B. \( - \frac{1}{{{x^2}}}.\)
C. \(\frac{3}{{{x^2}}}.\)
D. \( - \frac{3}{{{x^2}}}.\)
Cho hàm số \(f\left( x \right) = \frac{1}{x}.\) Khi đó, \(f''\left( 1 \right)\) bằng:
A. \(1.\)
B. \( - 2.\)
C. \(2.\)
D. \( - 1.\)
Tìm đạo hàm cấp hai mỗi hàm số sau:
a) \(f\left( x \right) = \frac{1}{{3x + 5}};\)
b) \(g\left( x \right) = {2^{x + 3{x^2}}}.\)