Nếu \({\left( {2 - \sqrt 3 } \right)^{a - 1}} < 2 + \sqrt 3 \) thì:
A. \(a > 0.\)
B. \(a > 1.\)
C. \(a < 1.\)
D. \(a < 0.\)
Sử dụng tính chất: Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha < \beta .\)
Ta có: \(0 < 2 - \sqrt 3 < 1\)
Theo đề bài:
\(\begin{array}{l}{\left( {2 - \sqrt 3 } \right)^{a - 1}} < 2 + \sqrt 3 \Leftrightarrow {\left( {2 - \sqrt 3 } \right)^{a - 1}} < \frac{1}{{2 - \sqrt 3 }} \Leftrightarrow {\left( {2 - \sqrt 3 } \right)^{a - 1}} < {\left( {2 - \sqrt 3 } \right)^{ - 1}}\\ \Leftrightarrow a - 1 > - 1 \Leftrightarrow a > 0.\end{array}\)
Đáp án A
Các bài tập cùng chuyên đề
Rút gọn biểu thức: \(A = \frac{{{{\left( {{a^{\sqrt 2 - 1}}} \right)}^{1 + \sqrt 2 }}}}{{{a^{\sqrt 5 - 1}}.{a^{3 - \sqrt 5 }}}}\,\,\,\left( {a > 0} \right).\)
Thực hiện phép tính:
a) \({27^{\frac{2}{3}}} + {81^{ - 0,75}} - {25^{0,5}};\)
b) \({4^{2 - 3\sqrt 7 }}{.8^{2\sqrt 7 }}.\)
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\)
b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
Nếu \({2^\alpha } = 9\) thì \({\left( {\frac{1}{{16}}} \right)^{\frac{\alpha }{8}}}\) có giá trị bằng
A. \(\frac{1}{3}\).
B. 3.
C. \(\frac{1}{9}\).
D. \(\frac{1}{{\sqrt 3 }}\).
Nêu những tính chất của phép tính lũy thừa với số mũ nguyên của một số thực dương.
Tính:
a) \({\left( {\frac{1}{{256}}} \right)^{ - 0,75}} + {\left( {\frac{1}{{27}}} \right)^{ - \frac{4}{3}}}\).
b) \({\left( {\frac{1}{{49}}} \right)^{ - 1,5}} - {\left( {\frac{1}{{125}}} \right)^{ - \frac{2}{3}}}\).
c) \(\left( {{4^{3 + \sqrt 3 }} - {4^{\sqrt 3 - 1}}} \right){.2^{ - 2\sqrt 3 }}\).
Cho a, b là những số thực dương. Viết các biếu thức sau dưới dạng lũy thừa với số mũ hữu tỉ:
a, \({a^{\frac{1}{3}}}.\sqrt a \)
b, \({b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.\sqrt[6]{b}\)
c, \({a^{\frac{4}{3}}}:\sqrt[3]{a}\)
d, \(\sqrt[3]{b}:{b^{\frac{1}{6}}}\)
Rút gọn mỗi biểu thức sau:
a) \(\frac{{{a^{\frac{7}{3}}} - {a^{\frac{1}{3}}}}}{{{a^{\frac{4}{3}}} - {a^{\frac{1}{3}}}}} \,\,\,(a > 0;a \ne 1)\).
b) \(\sqrt [3] {\sqrt {{a^{12}b^{6}}}}\,\,\,(a > 0;b > 0)\).
Viết các số sau theo thứ tự tăng dần:
a) \({1^{1,5}}\,;\,{3^{ - 1}}\,;\,{\left( {\frac{1}{2}} \right)^{ - 2}}\).
b) \({2022^0};{\left( {\frac{4}{5}} \right)^{ - 1}};{5^{\frac{1}{2}}}\).
Không sử dụng máy tính cầm tay, hãy so sánh các số sau:
a) \({6^{\sqrt 3 }}\) và \(36\).
b) \({(0,2)^{\sqrt {3} }}\) và \(({0,2})^{\sqrt 5}\).
a) Tìm x trong mỗi trường hợp sau: \({3^x} = 9;\,{3^x} = \frac{1}{9}\).
b) Có bao nhiêu số thực x thỏa mãn: \({3^x} = 5\).
Tính:
a) \({8^{{{\log }_2}5}}\)
b) \({\left( {\frac{1}{{10}}} \right)^{\log 81}}\)
c) \({5^{{{\log }_{25}}16}}\)
Nếu \({3^x} = 5\) thì \({3^{2x}}\) bằng:
A. 15
B. 125
C. 10
D. 25
Viết các biểu thức sau về lũy thừa cơ số a:
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\).
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \).
Cho x; y là các số thực dương. Rút gọn mỗi biểu thức sau:
\(A = \frac{{{x^{\frac{5}{4}}}y + x.{y^{\frac{5}{4}}}}}{{\sqrt[4]{x} + \sqrt[4]{y}}}\).
\(B = {\left( {\sqrt[7]{{\frac{x}{y}\sqrt[5]{{\frac{y}{x}}}}}} \right)^{\frac{{35}}{4}}}\).
So sánh cơ số \(a(a > 0)\)với \(1\); biết rằng:
a) \({a^{\frac{3}{4}}} > {a^{\frac{5}{6}}}\)
b) \({a^{\frac{{11}}{6}}} < {a^{\frac{{15}}{8}}}\)
Rút gọn các biễu thức sau:
a) \(\sqrt[5]{{32{x^{15}}{y^{20}}}}\)
b)\(6\sqrt[3]{{9{x^2}}} \cdot 3\sqrt[3]{{24x}}\).
Rút gọn các biễu thức sau:
a) \(2\sqrt {12} - 3\sqrt {27} + 2\sqrt {48} \)
b) \(8xy - \sqrt {25{x^2}{y^2}} + \sqrt[3]{{8{x^3}{y^3}}}(x > 0,y > 0)\)
Cho a là số thực đương. Rút gọn các biểu thức sau:
a) \({\left( {{a^{\sqrt 6 }}} \right)^{\sqrt {24} }}\)
b)\({a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\);
c) \({a^{ - \sqrt 3 }}:{a^{{{(\sqrt 3 - 1)}^2}}}\)
d) \(\sqrt[3]{a} \cdot \sqrt[4]{a} \cdot \sqrt[{12}]{{{a^5}}}\)
Cho a là số dương. Rút gọn biểu thức \(A = \frac{{\sqrt a \cdot \sqrt[3]{{{a^2}}}}}{{\sqrt[6]{a}}}\), ta được kết quả là
A. \(a\).
B. \({a^2}\).
C. \({a^{\frac{1}{3}}}\).
D. \({a^{\frac{1}{2}}}\).
Giá trị của biểu thức \(P = {2^{1 - \sqrt 2 }}{.2^{3 + \sqrt 2 }}{.4^{\frac{1}{2}}}\) bằng:
A. \(128.\)
B. \(64.\)
C. \(16.\)
D. \(32.\)
Nếu \(a > 1\) thì:
A. \({a^{ - \sqrt 3 }} > \frac{1}{{{a^{\sqrt 5 }}}}.\)
B. \({a^{ - \sqrt 3 }} < \frac{1}{{{a^{\sqrt 5 }}}}.\)
C. \({a^{ - \sqrt 3 }} \le \frac{1}{{{a^{\sqrt 5 }}}}.\)
D. \({a^{ - \sqrt 3 }} = \frac{1}{{{a^{\sqrt 5 }}}}.\)
Nếu \({a^{\sqrt 3 }} < {a^{\sqrt 2 }}\) thì:
A. \(a > 1.\)
B. \(a < 1.\)
C. \(0 < a < 1.\)
D. \(a > 0.\)
Biểu thức \(Q = {a^{\sqrt 3 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 3 - 1}}\) với \(a > 0\) được rút gọn bằng:
A. \(\frac{1}{a}.\)
B. \({a^3}.\)
C. \(a.\)
D. \(1.\)
Viết các biểu thức sau về lũy thừa cơ số a, biết:
a) \(A = \sqrt[7]{{3.\sqrt[5]{{\frac{1}{3}}}}}\) với \(a = 3;\)
b) \(B = \frac{{25\sqrt[3]{5}}}{{\sqrt {125} }}\) với \(a = \sqrt 5 .\)
Không sử dụng máy tính cầm tay, so sánh hai số a và b, biết:
a) \(a = {\left( {\sqrt 3 - 1} \right)^{\sqrt 2 }}\) và \(b = {\left( {\sqrt 3 - 1} \right)^{\sqrt 3 }};\) b) \(a = {\left( {\sqrt 2 - 1} \right)^\pi }\) và \(b = {\left( {\sqrt 2 + 1} \right)^e};\)
c) \(a = \frac{1}{{{3^{400}}}}\) và \(b = \frac{1}{{{4^{300}}}};\)
d) \(a = \frac{8}{{\sqrt[4]{{27}}}}\) và \(b = {\left( {\frac{{\sqrt 3 }}{2}} \right)^{\frac{3}{4}}}.\)
Xác định các giá trị của số thực a thỏa mãn:
a) \({a^{\frac{1}{2}}} > {a^{\sqrt 3 }};\)
b) \({a^{ - \frac{3}{2}}} < {a^{\frac{2}{3}}};\)
c) \({\left( {\sqrt 2 } \right)^a} > {\left( {\sqrt 3 } \right)^a}.\)
Cho \(a > 0,{\rm{ }}b > 0\). Rút gọn mỗi biểu thức sau:
a) \(A = \frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^4}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}};\)
b) \(B = \frac{{{a^{\frac{1}{3}}}\sqrt b + {b^{\frac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}}.\)
Cho \(x,y\) là các số thực dương và số thực a thỏa mãn:
\(a = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}} + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}} \). Chứng minh rằng \({a^{\frac{2}{3}}} = {x^{\frac{2}{3}}} + {y^{\frac{2}{3}}}.\)
Nếu \({a^{\frac{3}{4}}} < {a^{\frac{4}{5}}}\) thì:
A. \(a < 1.\)
B. \(0 < a < 1.\)
C. \(a < 0.\)
D. \(a > 1.\)