Các phân số sau có là phân số tối giản hay không? Hãy rút gọn chúng nếu chưa tối giản.
a)\(\frac{{21}}{{36}}\);
b)\(\frac{{23}}{{73}}\)
*Ước chung của tử và mẫu khác 1 thì phân số chưa tối giản
*Các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1:
- Phân tích mỗi số ra thừa số nguyên tố
- Chọn ra các thừa số nguyên tố chung
- Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
* Rút gọn phân số chưa tối giản bằng cách chia cả tử và mẫu của nó cho ƯCLN
a) \(\frac{{21}}{{36}}\)
Ta có:
21 = 3.7
36 = 22.32
+) Thừa số nguyên tố chung là 3 với số mũ nhỏ nhất là 1 nên ƯCLN(21, 36) = 3.
Ước chung của tử và mẫu khác 1 nên phân số chưa tối giản
Ta có: \(\frac{{21}}{{36}} = \frac{{21:3}}{{36:3}} = \frac{7}{{12}}\)
b)\(\frac{{23}}{{73}}\)
Ta có:
23 = 23
73 = 73
+) Không có thừa số nguyên tố chung nên ƯCLN(23, 73) = 1.
Lời giải hay
Các bài tập cùng chuyên đề
Rút gọn các phân số sau:\(\frac{{24}}{{108}};\,\,\frac{{80}}{{32}}\)
Rút gọn các phân số sau:
\(\frac{{28}}{{42}};\,\,\frac{{60}}{{135}};\,\,\frac{{288}}{{180}}\).
Rút gọn các phân số sau về phân số tối giản \(\frac{{60}}{{72}};\frac{{70}}{{95}};\frac{{150}}{{360}}\).
Phân số \(\frac{4}{9}\) bằng các phân số nào trong các phân số sau: \(\frac{{48}}{{108}};\frac{{80}}{{180}};\frac{{60}}{{130}};\frac{{135}}{{270}}\).
a) Tìm ƯCLN(4,9).
b) Có thể rút gọn phân số \(\frac{4}{9}\) được nữa không?
Rút gọn các phân số sau để được phân số tối giản (có sử dụng ước chung lớn nhất)
a) \(\frac{{28}}{{36}}\);
b) \(\frac{{63}}{{90}}\);
c) \(\frac{{40}}{{120}}\)
Hai phân số \(\frac{{60}}{{135}}\)và \(\frac{4}{9}\) có bằng nhau không? Hãy giải thích.
Rút gọn các phân số sau về phân số tối giản:
a) \(\frac{{12}}{{24}};\frac{{13}}{{39}};\frac{{35}}{{105}}\)
b) \(\frac{{120}}{{245}};\frac{{134}}{{402}};\frac{{213}}{{852}}\)
c) \(\frac{{234}}{{1170}};\frac{{1221}}{{3663}};\frac{{2133}}{{31995}}\)
Các phân số sau đã là phân số tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản:
a) \(\frac{{50}}{{85}};\)
b) \(\frac{{23}}{{81}}.\)
Phân số nào sau đây là phân số tối giản?
A. \(\frac{{12}}{{20}}\)
B. \(\frac{{25}}{{40}}\)
C. \(\frac{{22}}{{81}}\)
D. \(\frac{{123}}{{345}}\).
Rút gọn các phân số sau để được phân số tối giản (có sử dụng ước chung lớn nhất):
a) \(\frac{{24}}{{146}};\)
b) \(\frac{{64}}{{92}};\)
c) \(\frac{{27}}{{63}};\)
d) \(\frac{{55}}{{185}}\);
e)\(\frac{{51}}{{150}}\) ;
g) \(\frac{{64}}{{156}}\).
Xét xem các phân số sau đã tối giản hay chưa? Nếu chưa, hãy rút gọn về phân số tối giản.
a) \(\frac{{15}}{{17}}\);
b) \(\frac{{70}}{{105}}\).
Các phân số sau đã là phân số tối giản hay chưa? Nếu chưa hãy rút gọn về phân số tối giản.
a) \(\frac{{27}}{{123}}\) ;
b) \(\frac{{33}}{{77}}\).
Phân số nào trong các phân số sau là phân số tối giản
Chứng minh phân số sau là phân số tối giãn với mọi số nguyên \(n\): \(\frac{{12n + 1}}{{30n + 2}}\)
Phân số nào sau đây là tối giản
Trong các phân số sau, phân số tối giản là: