Cho bốn phân số \(\frac{{17}}{{80}};\frac{{611}}{{125}};\frac{{133}}{{91}};\frac{9}{8}\)
a) Phân số nào trong các phân số trên không viết được dưới dạng số thập phân hữu hạn?
b) Cho biết \(\sqrt 2 = 1,414213562...\), hãy so sánh phân số tìm được tròn câu a) với \(\sqrt 2 \)
Đổi các phân số ra số thập phân.
a) Ta thấy 80; 125 và 8 không có ước nguyên tố khác 2 và 5 nên \(\frac{{17}}{{80}};\frac{{611}}{{125}};\frac{9}{8}\) viết được dưới dạng số thập phân hữu hạn. Ngoài ra \(133 = 7.19;91 = 7.13\) nên \(\frac{{133}}{{91}} = \frac{{13}}{{19}}\)là phân số tối giản, mẫu có ước nguyên tố 13 nên phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn.
Vì vậy trong bốn phân số đã cho chỉ có \(\frac{{133}}{{91}}\) không viết được dưới dạng số thập phân hữu hạn.
b) Viết phân số tìm được trong phần a) dưới dạng số thập phân ta có \(\frac{{133}}{{91}} = 1,\left( {461538} \right)\). So sánh số này với \(\sqrt 2 = 1,414213562...\) ta thấy \(1,\left( {461538} \right) = 1,141538461... > 1,414213562...\) do đó \(\frac{{133}}{{91}} > \sqrt 2 \).
Các bài tập cùng chuyên đề
Tìm số hữu tỉ trong các số sau:
\(12;\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{2}{3};\,\,\,\,\,\,3,\left( {14} \right);\,\,\,\,\,\,\,0,123;\,\,\,\,\,\,\,\,\sqrt 3 \)
Trong các số sau, số nào là số hữu tỉ, số nào là số vô tỉ?
\(\frac{2}{3};\,\,\,\,3,\left( {45} \right);\,\,\,\,\sqrt 2 ;\,\,\, - 45;\,\,\, - \sqrt 3 ;\,\,\,0;\,\,\,\,\pi .\)
Số nào sau đây là số vô tỉ:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? Vì sao?
a) Số 0 vừa là số vô tỉ, vừa là số hữu tỉ.
b) Căn bậc hai số học của số x không âm là số y sao cho \({y^2} = x\).
c) \(\sqrt {15} \) là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Chọn từ “vô tỉ”, “hữu tỉ”, “hữu hạn”, “vô hạn không tuần hoàn” thích hợp vào ? :
a) Số vô tỉ được viết dưới dạng số thập phân ?;
b) \(\sqrt {26} \) là số ?;
c) \(\sqrt {\dfrac{1}{{144}}} \) là số ?;
d) \(\dfrac{{ - 7}}{{50}}\) viết được dưới dạng số thập phân ?.
Tìm số vô tỉ trong các số sau:
\(\sqrt 5 \);\(\sqrt {\dfrac{{25}}{4}} \);\(\sqrt {\dfrac{{144}}{{49}}} \)
Không dùng máy tính, hãy cho biết số \(\sqrt {555555} \) là số hữu tỉ hay vô tỉ.
Không dùng máy tính, hãy cho biết số \(\sqrt {\underbrace {11...1}_{101\,chữ\,số\,1}} \) là số hữu tỉ hay vô tỉ. Giải thích.