Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường \(\left( E \right):\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1\) quay quanh \(Oy\,\,?\)
-
A.
$V = 36\pi .$
-
B.
$V = 24\pi .$
-
C.
$V = 16\pi .$
-
D.
$V = 64\pi .$
Rút hàm số đã cho theo biến y : \(x = f\left( y \right)\), Vẽ hình và xác định các đường giới hạn.
Áp dụng công thức tính thể tích khối tròn khi xoay quanh trục Oy của hình phẳng bị giới hạn bởi đồ thị các hàm số \(x = f\left( y \right),x = g\left( y \right),y = a,y = b\) là \(V = \int\limits_a^b {\left| {{f^2}\left( y \right) - {g^2}\left( y \right)} \right|dy} \).

\(\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow {x^2} = 16\left( {1 - \dfrac{{{y^2}}}{9}} \right) \Leftrightarrow x = \pm \dfrac{4}{3}\sqrt {9 - {y^2}} \)
Phương trình tung độ giao điểm của đồ thị \(\left( E \right)\) với $Oy$ là \(\dfrac{0}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow \left[ \begin{array}{l}y = - \,3\\y = 3\end{array} \right..\)
Ta xét thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị hàm số \(x = \dfrac{4}{3}\sqrt {9 - {y^2}} \), đường thẳng $x = 0, y = 3, y = 0$ quanh trục $Ox$ là: \(V = \left| {\dfrac{{16}}{9}\pi \int\limits_0^3 {\left( {9 - {y^2}} \right)dy} } \right| = \left| {\dfrac{{16}}{9}\left. {\pi \left( {9y - \dfrac{{{y^3}}}{3}} \right)} \right|_0^3} \right| = 32\pi \).
Khi đó thể tích cần tìm là \(2V = 64\pi \).
Đáp án : D
Các bài tập cùng chuyên đề
Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\) , trục hoành và hai đường thẳng \(x = a,x = b\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) là:
Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng \(x = 0,x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Ox\) được tính bởi:
Cho hình \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(x = f\left( y \right)\) , trục tung và hai đường thẳng \(y = a,y = b\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Oy\) là:
Cho hình \(\left( H \right)\) giới hạn bởi đường cong \({y^2} + x = 0\), trục \(Oy\) và hai đường thẳng \(y = 0,y = 1\). Thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục \(Oy\) được tính bởi:
Cho hình phẳng $\left( H \right)$ giới hạn bởi \(y = \dfrac{1}{3}{x^3} - {x^2}\) và $Ox$. Thể tích khối tròn xoay sinh ra khi quay $\left( H \right)$ quanh $Ox$ bằng :
Kí hiệu $\left( H \right)$ là hình phẳng giới hạn bởi đồ thị hàm số $y = 2\left( {x-1} \right){e^x}$, trục tung và trục hoành. Tính thể tích $V$ của khối tròn xoay thu được khi quay hình $\left( H \right)$ xung quanh trục $Ox$ .
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = {x^2} + 1;x = 0\) và tiếp tuyến của đồ thị hàm số \(y = {x^2} + 1\) tại điểm \(A\left( {1;2} \right)\) quanh trục $Ox$ là
Gọi $V$ là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = 0\) và $x = 4$ quanh trục $Ox$ . Đường thẳng \(x = a(0 < a < 4)\) cắt đồ thị hàm số \(y = \sqrt x \) tại $M$ (hình vẽ bên).

Gọi ${V_1}$ là thể tích khối tròn tạo thành khi quay quanh tam giác $OMH$ quanh trục $Ox$. Biết rằng \(V = 2{V_1}\) . Khi đó:
Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ?

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường $y = \sqrt {2 - x} ;y = x$ xung quanh trục $Ox$ được tính theo công thức nào sau đây?
Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = a\) và \(x = b\left( {a < b} \right)\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right)\). Thể tích của \(V\) được tính bởi:
Cho vật thể \(V\) được giới hạn bởi hai mặt phẳng \(x = 0\) và \(x = - 2\), mặt phẳng vuông góc với trục \(Ox\) cắt \(V\) theo thiết diện \(S\left( x \right) = 2{x^2}\). Thể tích của \(V\) được tính bởi:
Tính thể tích $V$ của phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 3\), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục $Ox$ tại điểm có hoành độ \(x\) (\(1 \le x \le 3\)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(3x\) và \(\sqrt {3{x^2} - 2} \).
Cho hình phẳng giới hạn bởi $D = \left\{ {y = \tan x;\,\,y = 0;\,\,x = 0;\,\,x = \dfrac{\pi }{3}} \right\}.$ Thể tích vật tròn xoay khi $D$ quay quanh trục $Ox$ là $V = \pi \left( {a - \dfrac{\pi }{b}} \right),$ với $a,\,\,b \in R.$ Tính $T = {a^2} + 2b.$
Tính thể tích khi $S = \left\{ {y = {x^2} - 4x + 6;\,\,y = - \,{x^2} - 2x + 6} \right\}$ quay quanh trục $Ox.$
Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh $Ox$ của hình giới hạn bởi trục $Ox$ và parabol $\left( P \right):y = {x^2} - ax\,\,\,\,\left( {a > 0} \right)$ bằng $V = 2.$ Khẳng định nào dưới đây đúng ?
Cho hình phẳng $\left( H \right)$ giới hạn bởi các đường $y = - \,{x^2} + 2x$ và $y = 0$. Tính thể tích của khối tròn xoay tạo thành khi quay hình $\left( H \right)$ quanh trục $Oy$ là
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị $y = - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0$ quay quanh trục $Ox$ là $V = \dfrac{{a\pi \sqrt 3 }}{b},$ với $a,\,\,b > 0$ và $\dfrac{a}{b}$ là phân số tối giản. Tính tổng $T = a + b.$
Tính thể tích hình xuyến do quay hình tròn có phương trình ${x^2} + {\left( {y - 2} \right)^2} = 1$ khi quanh trục $Ox.$
Gọi \(\left( {{D_1}} \right)\) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,\,\,y = 0\) và \(x = 2020,\) \(\left( {{D_2}} \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt {3 x},\,\,y = 0\) và \(x = 2020.\) Gọi \({V_1},\,\,{V_2}\) lần lượt là thể tích khối tròn xoay tạo thành khi quay \(\left( {{D_1}} \right)\) và \(\left( {{D_2}} \right)\) xung quanh trục \(Ox.\) Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng: