Đề bài

Cho tam giác đều ABC cạnh có độ dài là a. Tính độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC}\) 

Phương pháp giải

Bước 1: Dựng hình bình hành ABDC

Bước 2: Áp dụng quy tắc hình bình hành tìm tổng vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \)

Bước 3: Tìm độ dài vectơ tổng.

Lời giải của GV Loigiaihay.com

Dựng hình bình hành ABDC.

 

Áp dụng quy tắc hình bình hành vào ABDC ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD}  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)

Gọi O là giao điểm của AD BC, ta có:

\(AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

\(AD = 2AO = a\sqrt 3  \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = a\sqrt 3 \)

Vậy độ dài vectơ \(\overrightarrow {AB}  + \overrightarrow {AC} \) là \(a\sqrt 3 \)

Các bài tập cùng chuyên đề

Bài 1 :

Cho hình bình hành ABCD. Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {AB}  + \overrightarrow {AD} \) và \(\overrightarrow {AC} \)

Xem lời giải >>
Bài 2 :

Hãy giải thích hướng đi của thuyền ở Hình 48.

Xem lời giải >>
Bài 3 :

Cho ABCD là hình bình hành (Hình 52). So sánh:

a) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).

b) Vecto tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \) và vecto \(\overrightarrow {AC} \)

Xem lời giải >>
Bài 4 :

Hai người cùng kéo một con thuyền với hai lực \(\overrightarrow {{F_1}}  = \overrightarrow {OA} ,\overrightarrow {{F_2}}  = \overrightarrow {OB} \) có độ lớn lần lượt là 400 N, 600 N (hình 8). Cho biết góc giữa hai vectơ là \({60^\circ }\). Tìm độ lớn của vectơ hợp lực \(\overrightarrow F \) là tổng của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \)

Xem lời giải >>
Bài 5 :

Cho hình bình hành ABCD (Hình 4). Chứng minh rằng: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Xem lời giải >>
Bài 6 :

Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây là đúng?

A. \(\overrightarrow {BA}  + \overrightarrow {DA}  = \overrightarrow {CA} \)

B. \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AD} \)

C. \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {CA} \)      

D. \(\overrightarrow {AB}  + \overrightarrow {BC}  =  - \overrightarrow {AC} \)

Xem lời giải >>
Bài 7 :

Cho hình bình hành ABCD. Khẳng định nào sau đây là đúng?

A. \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {BC} \)     

B. \(\overrightarrow {AC}  + \overrightarrow {BC}  = \overrightarrow {AB} \)

C. \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {CD} \) 

D. \(\overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow {CD} \)

Xem lời giải >>
Bài 8 :

Trong mặt phẳng Oxy, cho điểm M. Xác định tọa độ của vectơ \(\overrightarrow {OM} \).

Xem lời giải >>
Bài 9 :

Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).

  • A.

    5 cm

  • B.

    7 cm

  • C.

    9 cm

  • D.

    11 cm

Xem lời giải >>