Hãy giải thích hướng đi của thuyền ở Hình 48.
Bước 1: Gọi tên các lực tác động lên thuyền.
Bước 2: Vận dụng quy tắc hình bình hành tính tổng hai lực.
Gọi vecto \(\overrightarrow {AB} ,\overrightarrow {AD} \) là các vecto biểu diễn lực mà hai người cùng tác động lên điểm A của thuyền.
Khi đó thuyền chịu một lực là tổng hai lực kéo đó.
Vậy thuyền đi theo hướng của vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \)
Vẽ hình bình hành ABCD. Khi đo ta có: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Vậy khi hai người cùng kéo, thuyền đi theo vecto đường chéo của hình bình hành tạo bởi hai lực kéo của hai người.
Các bài tập cùng chuyên đề
Cho hình bình hành ABCD. Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \) và \(\overrightarrow {AC} \)
Cho ABCD là hình bình hành (Hình 52). So sánh:
a) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).
b) Vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \) và vecto \(\overrightarrow {AC} \)
Hai người cùng kéo một con thuyền với hai lực \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\overrightarrow {{F_2}} = \overrightarrow {OB} \) có độ lớn lần lượt là 400 N, 600 N (hình 8). Cho biết góc giữa hai vectơ là \({60^\circ }\). Tìm độ lớn của vectơ hợp lực \(\overrightarrow F \) là tổng của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \)
Cho tam giác đều ABC cạnh có độ dài là a. Tính độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC}\)
Cho hình bình hành ABCD (Hình 4). Chứng minh rằng: \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {BA} + \overrightarrow {DA} = \overrightarrow {CA} \)
B. \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AD} \)
C. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {CA} \)
D. \(\overrightarrow {AB} + \overrightarrow {BC} = - \overrightarrow {AC} \)
Cho hình bình hành ABCD. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {BC} \)
B. \(\overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {AB} \)
C. \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {CD} \)
D. \(\overrightarrow {AC} + \overrightarrow {AD} = \overrightarrow {CD} \)
Trong mặt phẳng Oxy, cho điểm M. Xác định tọa độ của vectơ \(\overrightarrow {OM} \).
Cho hình chữ nhật ABCD có AB = 4 cm, AD = 3 cm. Tính \(\left| {\overrightarrow {BC} + \overrightarrow {BA} } \right|\).
-
A.
5 cm
-
B.
7 cm
-
C.
9 cm
-
D.
11 cm