a) Cho hình 3.19, biết \(\widehat {{A_2}} = 40^\circ ;\widehat {{B_4}} = 40^\circ \). Em hãy cho biết số đo các góc còn lại.
b) Các cặp góc A1 và B4; A2 và B3 được gọi là các cặp góc trong cùng phía. Tính tổng: \(\widehat {{A_1}} + \widehat {{B_4}};\widehat {{A_2}} + \widehat {{B_3}}\).
Sử dụng tính chất: Tổng 2 góc kề bù bằng 180 độ hoặc 2 góc đối đỉnh thì bằng nhau
Đường thẳng c cắt 2 đường thẳng, tạo thành 1 cặp góc so le trong bằng nhau.
a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)
\( \Rightarrow \widehat {{A_1}} + 40^\circ = 180^\circ \)
\( \Rightarrow \widehat {{A_1}} = 180^\circ - 40^\circ = 140^\circ \)
Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)
\(\widehat {{A_2}} = \widehat {{A_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)
Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong
\( \Rightarrow \) 2 góc đồng vị bằng nhau nên
\(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)
b) Ta có:
\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ + 40^\circ = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ + 140^\circ = 180^\circ \end{array}\)
Các bài tập cùng chuyên đề
Trên Hình 3.18, cho biết hai góc so le trong A1 và B3 bằng nhau và bằng \(60^\circ \).
Hãy tính và so sánh hai góc so le trong còn lại A2 và B4.
Quan sát Hình 3.25. Biết \(\widehat {MEF} = 40^\circ ;\widehat {EMN} = 40^\circ \). Em hãy giải thích tại sao EF // NM.
Hình 33 minh họa góc quan sát của người phi công và góc quan sát của người hoa tiêu khi hướng dẫn máy bay bay vào vị trí ở sân bay
Theo em dự đoán, hai góc đó có bằng nhau hay không?
Góc ở vị trí so le trong với \(\widehat {xMN}\) là
A. \(\widehat {yNt'}\)
B. \(\widehat {MNy'}\)
C. \(\widehat {xMt}\)
D. \(\widehat {NMx'}\).