Cho hình chữ nhật ABCD có AC cắt BD tại O. Gọi H, K lần lượt là trung điểm của AB, AD. Chứng minh tứ giác AHOK là hình chữ nhật.
Chứng minh tứ giác AHOK có 3 góc vuông nên là hình chữ nhật.
Vì ABCD là hình chữ nhật nên \(\widehat {BA{\rm{D}}} = {90^o}\) và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.
Suy ra AB ⊥ AD; O là trung điểm của AC và BD.
Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.
Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay \(\widehat {AHO} = {90^o}\)
Tương tự, ta chứng minh được: OK ⊥ AD hay \(\widehat {AK{\rm{O}}} = {90^o}\).
Ta có: \(\widehat {BA{\rm{D}}} + \widehat {AHO} + \widehat {AK{\rm{O}}} + \widehat {HOK} = {360^o}\)
90°+90°+90°+\(\widehat {HOK}\)=360°
270°+\(\widehat {HOK}\)=360°
Suy ra \(\widehat {HOK}\)=360°−270°=90°
Tứ giác AHOK có \(\widehat {BA{\rm{D}}}\)=90°;ˆAHO=90°; \(\widehat {AHO}\)=90°;\(\widehat {AK{\rm{O}}}\)=90o
Do đó, tứ giác AHOK là hình chữ nhật.
Các bài tập cùng chuyên đề
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.
a) Chứng minh EK // CD, FK // AB.
b) So sánh EF và \(\dfrac{1}{2}(AB + C{\rm{D}})\)
Tính độ dài đoạn \(PQ\) (Hình 10).
Cho biết cạnh mỗi ô vuông bằng \(1cm\). Tính độ dài các đoạn \(PQ,PR,RQ,AB,BC,CA\) trong Hình 11.
Cho tam giác \(ABC\) nhọn. Gọi \(M,N,P\) lần lượt là trung điểm của \(AB;AC;BC\). Kẻ đường cao \(AH\). Chứng minh rằng tứ giác \(MNPH\) là hình thang cân.
Một mái nhà được vẽ như Hình 13. Tính độ dài \(x\) trong hình mái nhà.
Ảnh chụp từ Google Maps của một trường học được cho trong Hình 14. Hãy tính chiều dài cạnh \(DE\), cho biết \(BC = 232m\) và \(B,C\) lần lượt là trung điểm của \(AD\) và \(AE\).
Cho tam giác ABC có AM là đường trung tuyến, các điểm N, P phân biệt thuộc cạnh AB sao cho \(AP = PN = NB\). Gọi Q là giao điểm của AM và CP. Chứng minh:
a) \(MN//CP\)
b) \(AQ = QM\)
c) \(CP = 4PQ\)
Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Cho \(AC = BD\). Chứng minh tứ giác MNPQ là hình thoi.
c) Cho \(AC \bot BD\). Chứng minh tứ giác MNPQ là hình chữ nhật.
Cho tam giác \(ABC\), các đường trung tuyến \(BD, CE\). Gọi \(M, N\) theo thứ tự là trung điểm của \(BE, CD\). Gọi \(I, K\) theo thứ tự là giao điểm của \(MN\) với \(BD\) và \(CE\) Chứng minh rằng:
a) \(\)\(\)\(ED\parallel BC\)
b) \(\)\(\)\(MN\parallel BC\)
c) \(MI = IK = KN\).
Cho \(\Delta ABC\), trung tuyến \(AM\), đường phân giác của \(\widehat {AMB}\) cắt \(AB\) ở \(D\) đường phân giác của \(\widehat {AMC}\) cắt \(AC\) ở \(E\).
a) Chứng minh rằng \(AD.AC = AE.AB\) và \(DE\parallel BC\).
b) Gọi \(I\) là giao điểm của \(AM\) và \(DE\). Chứng minh rằng \(I\) là trung điểm của \(DE\).
c) Tính \(DE\), biết \(BC = 30\,cm\) và \(AM = 10\,cm\).
d) Tam giác \(ABC\) phải thêm điều kiện gì để \(DE\) là đường trung bình của tam giác đó?