Đề bài

Cho ∆ABC, từ điểm D trên cạnh BC, kẻ đường thẳng song song với AB cắt AC tại F và kẻ đường thẳng song song với AC cắt AB tại E.

Chứng minh rằng: \(\dfrac{{A{\rm{E}}}}{{AB}} + \dfrac{{AF}}{{AC}} = 1\)

Phương pháp giải

Áp dụng định lí Thalès trong tam giác ABC, ta có các tỉ lệ thức. Áp dụng dãy tỉ số bằng nhau ta được đpcm.

Lời giải của GV Loigiaihay.com

Áp dụng định lí Thalès, ta có:

• Vì DE // AC nên \(\dfrac{{A{\rm{E}}}}{{AB}} = \dfrac{{C{\rm{D}}}}{{BC}}\)

• Vì DF // AB nên \(\dfrac{{AF}}{{AC}} = \dfrac{{B{\rm{D}}}}{{BC}}\)

Khi đó, \(\dfrac{{A{\rm{E}}}}{{AB}} + \dfrac{{AF}}{{AC}} = \dfrac{{C{\rm{D}}}}{{BC}} + \dfrac{{B{\rm{D}}}}{{BC}} = 1\) (đpcm).

Các bài tập cùng chuyên đề

Bài 1 :

Tìm các độ dài x, y trong Hình 4.6.

Xem lời giải >>
Bài 2 :

Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).

• So sánh các tỉ số \(\dfrac{{AB'}}{{AB}}\) và \(\dfrac{{AC'}}{{AC}}\)

• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.

• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?

Xem lời giải >>
Bài 3 :

Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?

Xem lời giải >>
Bài 4 :

Tìm độ dài x, y trong Hình 4.9 (làm tròn kết quả đến chữ số thập phân thứ nhất).

Xem lời giải >>
Bài 5 :

Cho ∆ABC có trọng tâm G. Vẽ đường thẳng d qua G và song song với AB, d cắt BC tại điểm M. Chứng minh rằng \(BM = \dfrac{1}{3}BC\)

Xem lời giải >>
Bài 6 :

Để đo khoảng cách giữa hai vị trí B và E ở hai bên bờ sông, bác An chọn ba vị trí A, F, C cùng nằm ở một bên bờ sông sao cho ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF (H.4.11). Sau đó bác An đo được AF = 40 m, FC = 20 m, EC = 30 m. Hỏi khoảng cách giữa hai vị trí B và E bằng bao nhiêu?

Xem lời giải >>
Bài 7 :

Độ dài x trong Hình 4.31 bằng

A. 2,75

B. 2.

C. 2,25.

D. 3,75.

Xem lời giải >>
Bài 8 :

Cho tam giác ABC có AB = 9 cm, D là điểm thuộc cạnh AB sao cho AD = 6 cm. Kẻ DE song song với BC (E thuộc AC), kẻ EF song song với CD (F thuộc AB). Độ dài AF bằng

A. 4 cm.

B. 5 cm.

C. 6 cm.

D. 7 cm.

Xem lời giải >>
Bài 9 :

Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.

Xem lời giải >>
Bài 10 :

Tìm độ dài x trong Hình 4.30

Xem lời giải >>
Bài 11 :

Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: \(D{M^2}\) = MN . MK.

Xem lời giải >>
Bài 12 :

Tìm độ dài x trong các hình vẽ sau (H.5.4)

 

Xem lời giải >>
Bài 13 :

Tìm độ dài x trong Hình 5.5:

Xem lời giải >>
Bài 14 :

Cho hình thang ABCD (AB//DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng:

a) \(\frac{{AM}}{{MD}} = \frac{{BN}}{{NC}}\);

b) \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = 1\).

Xem lời giải >>
Bài 15 :

Độ dài x trong Hình 5.13 là

A. 20

B. 50

C. 12

D. 30

Xem lời giải >>
Bài 16 :

Cho hình thang ABCD (AB//DC). Gọi O là giao điểm của AC và BD. Xét các khẳng định sau:

(1) \(\frac{{OA}}{{OC}} = \frac{{OD}}{{OB}}\)

(2) \(OA.OD = OB.OC\)

(3) \(\frac{{AO}}{{AC}} = \frac{{BO}}{{BD}}\)

Số khẳng định đúng là:

A. 0

B. 1

C. 2

D. 3

Xem lời giải >>
Bài 17 :

Cho Hình 5.14, biết DE//AC. Độ dài x là

A. 5

B. 7

C. 6,5

D. 6,25

Xem lời giải >>
Bài 18 :

Cho Hình 5.15, biết \(ED \bot AB,AC \bot AB.\) Khi đó, x có giá trị là

A. 2,5

B. 2

C. 3

D. 4

Xem lời giải >>
Bài 19 :

Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.

a) Chứng minh rằng \(AI = CK\).

b) Gọi N là giao điểm của EF và AC. Chứng minh rằng: \(\frac{{AB}}{{AE}} + \frac{{AD}}{{AF}} = \frac{{AC}}{{AN}}\).

Xem lời giải >>
Bài 20 :

Cho góc nhọn xOy. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng \(\frac{{MA}}{{MO}} + \frac{{NB}}{{NO}} = 1\)

Xem lời giải >>
Bài 21 :

Quan sát Hình 4.1 biết MN // BC. Tỉ số \(\frac{{AM}}{{MB}}\) bằng

 

A. \(\frac{{AN}}{{AC}}\)

B. \(\frac{{AN}}{{NC}}\)

C. \(\frac{{NC}}{{AN}}\)

D. \(\frac{{BM}}{{AB}}\)

Xem lời giải >>
Bài 22 :

Quan sát Hình 4.2 và chọn khẳng định đúng.

 

A. \(\frac{{PI}}{{PM}} = \frac{{KN}}{{PN}}.\)

B. \(\frac{{IM}}{{IP}} = \frac{{KP}}{{PN}}.\)

C. \(\frac{{MI}}{{MP}} = \frac{{NK}}{{NP}}.\)

D. \(\frac{{PI}}{{PM}} = \frac{{PK}}{{KN}}.\)

Xem lời giải >>
Bài 23 :

Quan sát Hình 4.3. Biết DE // BC, AD = 12, DB = 18, CE = 30. Độ dài AC bằng:

 

A. 20.

B. 56.

C. 45.

D. 50.

Xem lời giải >>
Bài 24 :

Tìm độ dài x, y trong Hình 4.4 (làm tròn kết quả đến chữ số thập phân thứ nhất).

Xem lời giải >>
Bài 25 :

Cho ∆ABC, từ điểm D trên cạnh BC, kẻ đường thẳng song song với AB cắt AC tại F và kẻ đường thẳng song song với AC cắt AB tại E. Chứng minh rằng: \(\frac{{AE}}{{AB}} + \frac{{AF}}{{AC}} = 1.\)

Xem lời giải >>
Bài 26 :

Cho ∆ABC có trọng tâm G. Vẽ đường thẳng d qua G và song song với AB, d cắt BC tại điểm M. Chứng minh rằng \(BM = \frac{1}{3}BC.\)

Xem lời giải >>
Bài 27 :

Để đo khoảng cách giữa hai vị trí B và E ở hai bên bờ sông, bác An chọn ba vị trí A, F, C cùng nằm ở một bên bờ sông sao cho ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF (H.4.8). Sau đó bác An đo được AF = 40 m, FC = 20 m, EC = 30 m. Hỏi khoảng cách giữa hai vị trí B và E bằng bao nhiêu?

 

Xem lời giải >>
Bài 28 :

Cho hình thang ABCD (AB // DC), AC cắt BD tại I. Chứng minh rằng IA . ID = IB . IC.

Xem lời giải >>
Bài 29 :

Tìm độ dài x trong Hình 4.25.

 

Xem lời giải >>
Bài 30 :

Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. Chứng minh rằng: DM2 = MN.MK.

Xem lời giải >>