Cho tam giác nhọn ABC nội tiếp đường tròn (O), AD là đường kính của (O) và H là trực tâm của \(\Delta \)ABC. Chứng minh BHCD là hình bình hành.
Đọc kĩ dữ liệu đề bài để vẽ hình.
Góc nội tiếp chắn nửa đường tròn.
Chứng minh BD // CH và BH // CD suy ra BHCD là hình bình hành.
Ta có BD \( \bot \) AB do \(\widehat {ABD} = {90^o}\) (góc chắn nửa đường tròn)
CH \( \bot \) AB (CH là đường cao \(\Delta \)ABC)
Suy ra BD // CH (1)
Ta có BH \( \bot \) AC (do BH là đường cao \(\Delta \)ABC)
CD \( \bot \) AC do \(\widehat {ACD} = {90^o}\) (góc chắn nửa đường tròn)
Suy ra BH // CD (2)
Từ (1) và (2) suy ra tứ giác BHDC là hình bình hành.
Các bài tập cùng chuyên đề
Cho d là đường trung trực của đoạn thẳng AB và O là một điểm trên d (H.9.12). Hỏi đường tròn tâm O đi qua điểm A thì có đi qua điểm B không?
Cho tam giác ABC có ba đường trung trực đồng quy tại O (H.9.13). Hãy giải thích tại sao đường tròn (O; OA) đi qua ba đỉnh của tam giác ABC.
Hãy kể tên bốn tam giác nội tiếp đường tròn (O) trong Hình 9.14.
Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}\).
Cho ba điểm A, B, C không thẳng hàng. Gọi O là giao điểm của đường trung trực của đoạn thẳng AB và BC (Hình 1).
a) So sánh độ dài của đoạn thẳng OA, OB và OC.
b) Vẽ đường tròn đi qua ba điểm A, B, C.
Cho biết các đỉnh của tam giác ABC (Hình 2) có thuộc đường tròn (O) hay không?
Quan sát Hình 4 và cho biết trong hai đường tròn (O) và (I), đường tròn nào ngoại tiếp tam giác ABC, đường tròn nào ngoại tiếp tam giác ABD?
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O) đường kính AD = 2R. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Chứng minh:
a) \(BD \bot AB,CD \bot AC.\)
b) Tứ giác BHCD là hình bình hành.
c) \(A{C^2} + B{H^2} = 4{R^2}.\)
d) Ba điểm H, M, D thẳng hàng và AH = 2OM.
Vẽ tam giác ABC. Vẽ ba đường trung trực của tam giác ABC và xác định giao điểm O của chúng. Giải thích vì sao đường tròn tâm O bán kính OA đi qua cả ba đỉnh của \(\Delta \)ABC. (Hình 7.2)