Thực hiện lần lượt các yêu cầu sau để tính số mililit dung dịch acid HCl nồng độ 20% và số mililit dung dịch acid HCl nồng độ 5% cần dùng để pha chế 2 lít dung dịch acid HCl nồng độ 10%.
a) Gọi x là số mililit dung dịch HCl nồng độ 20%, y là số mililit dung dịch HCl nồng độ 5% cần lấy. Hãy biểu thị qua x và y:
- Thể tích của dung dịch HCl 10% nhận được sau khi trộn lẫn hai dung dịch acid ban đầu.
- Tổng số gam acid HCl nguyên chất có trong hai dung dịch acid này.
b) Sử dụng kết quả ở câu a, hãy lập một hệ hai phương trình bậc nhất hai ẩn là x, y. Giải hệ phương trình này để tính số mililit cần lấy của mỗi dung dịch HCl ở trên.
Đối với bài toán này ta cần nhớ cách đổi đơn vị, \(2\left( l \right) = 2000\left( {ml} \right)\)
Tổng thể tích hai dung dịch ban đầu là thể tích của dung dịch cuối cùng ta thu được nên ta có \(x + y = 2000\left( {ml} \right).\)
* Chuyển đổi Nồng độ % sang nồng độ mol: \({C_M} = C\% .\frac{{10.D}}{M}\)
Với D là khối lượng riêng của dung dịch
M là khối lượng mol
Khối lượng riêng của dung dịch HCl là \(1,49 g/cm^3\)
Đổi 2l = 2000ml
a) Thể tích của dung dịch HCl 10% nhận được sau khi trộn lẫn hai dung dịch acid ban đầu là 2 lít nên ta có phương trình: \(x + y = 2000\left( {ml} \right).\)
Số ml dung dịch HCl nồng độ 20% nguyên chất là: \(20\%.x (ml)\)
Khối lượng dung dịch HCl 20% nguyên chất là:
\(20\%x.1,49(g)\)
Số ml dung dịch HCl 5% nguyên chất là: \(5\%.y(ml)\)
Khối lượng dung dịch HCl 5% nguyên chất là:
\(5\%.y.1,49(g)\)
Tổng số gam HCl nguyên chất sau pha là:
\(20\%.x.1,49 + 5\%.y.1,49\) (gam)
Trong 2 lít dung dịch HCl 10% có khối lượng HCl nguyên chất là:
\(10\%.2000.1,49(g)\)
Ta có phương trình:
\(20\%x.1,49 + 5\%.y.1,49 = 10\%.2000.1,49 \) hay \(0,2.x + 0,05.y = 200 \)
b) Từ câu a ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 2000\\0,2.x + 0,05.y = 200\end{array} \right.\)
Từ phương trình đầu ta có \(x = 2000 - y\) thay vào phương trình thứ hai ta được
\(0,2.(2000 - y) + 0,05.y = 200\)
\(400 - 0,2y + 0,05y = 200\)
\(-0,15y = -200\)
\(y = \frac{{4000}}{3}.\)
Thế \(y = \frac{{4000}}{3}\) vào phương trình thứ nhất ta được \(x = \frac{{2000}}{3}.\)
Vậy cần lấy \(\frac{{2000}}{3}\left( {ml} \right)\) dung dịch HCl 20% và \(\frac{{4000}}{3}\left( {ml} \right)\) dung dịch HCl 5%.
Các bài tập cùng chuyên đề
Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}2x + 3y = - 4\\ - 3x - 7y = 13;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}2x + 3y = 1\\ - x - 1,5y = 1;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}8x - 2y - 6 = 0\\4x - y - 3 = 0.\end{array} \right.\)
Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + \frac{2}{3}y = 0;\end{array} \right.\)
d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2.\end{array} \right.\)
Cặp số nào sau đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5x + 7y = - 1\\3x + 2y = - 5\end{array} \right.?\)
A. \(\left( { - 1;1} \right).\)
B. \(\left( { - 3;2} \right).\)
C. \(\left( {2; - 3} \right).\)
D. \(\left( {5;5} \right).\)
Hệ phương trình \(\left\{ \begin{array}{l}1,5x - 0,6y = 0,3\\ - 2x + y = - 2\end{array} \right.\)
A. Có nghiệm là \(\left( {0; - 0,5} \right).\)
B. Có nghiệm là \(\left( {1;0} \right).\)
C. Có nghiệm là \(\left( { - 3; - 8} \right).\)
D. Vô nghiệm.
Hệ phương trình \(\left\{ \begin{array}{l}0,6x + 0,3y = 1,8\\2x + y = - 6\end{array} \right.\)
A. Có 1 nghiệm.
B. Vô nghiệm.
C. Có vô số nghiệm.
D. Có hai nghiệm.
Tìm nghiệm của các hệ phương trình sau bằng máy tính cầm tay:
a) \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 4}\\{3x + 5y = - 19}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{ - 3x + 5y = 12}\\{2x + y = 5}\end{array}} \right.\)
Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}3x - 2y = 1\\ - 6x + y = 3\end{array} \right.\)
Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + y = 9\\x - y = - 1\end{array} \right.\) là:
A. \(\left( {x;y} \right) = \left( {4,5} \right)\);
B. \(\left( {x;y} \right) = \left( {5;4} \right)\);
C. \(\left( {x;y} \right) = \left( { - 5; - 4} \right)\);
D. \(\left( {x;y} \right) = \left( { - 4; - 5} \right)\)
Sử dụng máy tính cầm tay thích hợp, tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}9x - 5y = - 11\\22x + 17y = 3;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}\frac{2}{5}x - \frac{3}{8}y = \frac{1}{4}\\ - \frac{4}{5}x + \frac{9}{8}y = \frac{7}{8}\end{array} \right.\)
c) \(\left\{ \begin{array}{l}0,6x - 0,7y = 1,5\\ - 0,2x + 0,3y = - 1\end{array} \right.\)
Sử dụng máy tính cầm tay thích hợp, tìm nghiệm của mỗi hệ phương trình sau:
a) \(\left\{ \begin{array}{l}11x - 13y = - 7\\7x + 19y = 2\end{array} \right.\)
b) \(\left\{ \begin{array}{l}\frac{1}{8}x + \frac{3}{4}y = \frac{1}{{16}}\\ - \frac{4}{5}x + \frac{7}{5}y = \frac{1}{5}\end{array} \right.\)
c) \(\left\{ \begin{array}{l}0,12x - 0,15y = - 2,4\\0,21x + 0,35y = - 3,6\end{array} \right.\)
(Sử dụng máy tính cầm tay) Hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 1\\x + 5y = 6\end{array} \right.\) có nghiệm là
(Sử dụng máy tính cầm tay) Hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 3\\ - 2x + 4y = 11\end{array} \right.\) có nghiệm là
(Sử dụng máy tính cầm tay) Hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 2\\3x + 9y = 6\end{array} \right.\) có
(Sử dụng máy tính cầm tay) Hệ phương trình \(\left\{ \begin{array}{l}6x + 1 = y\\ - 5x + 2y = - 12\end{array} \right.\) có nghiệm là
(Sử dụng máy tính cầm tay) Hệ phương trình \(\left\{ \begin{array}{l}2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\\\left( {x + y} \right) + 2\left( {x - y} \right) = 5\end{array} \right.\) có nghiệm là
Hệ phương trình \(\left\{ \begin{array}{l}\frac{5}{3}x + y = - 2\\x - y = 3\end{array} \right.\)
A. có nghiệm là \(\left( {\frac{3}{8};\frac{{27}}{8}} \right)\).
B. có nghiệm là \(\left( {\frac{3}{8};\frac{{ - 21}}{8}} \right)\).
C. vô nghiệm.
D. có nghiệm là \(\left( {\frac{{ - 3}}{8};\frac{{27}}{8}} \right)\).
Hệ phương trình \(\left\{ \begin{array}{l} - 2,5x + y = 5\\0,5x - 1,5y = 0\end{array} \right.\)
A. có một nghiệm.
B. có hai nghiệm.
C. vô nghiệm.
D. có vô số nghiệm.
Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}12x - 5y + 24 = 0\\ - 5x - 3y - 10 = 0\end{array} \right.\);
b) \(\left\{ \begin{array}{l}\frac{1}{3}x - y = \frac{2}{3}\\x - 3y = 2\end{array} \right.\);
c) \(\left\{ \begin{array}{l}3x - 2y = 1\\ - x + \frac{2}{3}y = 0\end{array} \right.\);
d) \(\left\{ \begin{array}{l}\frac{4}{9}x - \frac{3}{5}y = 11\\\frac{2}{9}x + \frac{1}{5}y = - 2\end{array} \right.\).
Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = - 1\\2x - y = 7\end{array} \right.\) là
A. (-1; 1).
B. (3; -1).
C. \(\left( {\frac{1}{2}; - 1} \right)\).
D. (2; -3).
Hệ phương trình nào sau đây có nghiệm duy nhất?
A. \(\left\{ \begin{array}{l}x - 2y = 3\\2x - 4y = 5\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x - 2y = 3\\ - 2x + 4y = - 6\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x - 2y = 3\\2x + 4y = 5\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x - 2y = 3\\ - x + 2y = - 2\end{array} \right.\).
Sử dụng MTCT, tìm nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l}\sqrt 3 x + 3y = 1\\2x - \sqrt 3 y = \sqrt 3 \end{array} \right.\);
b) \(\left\{ \begin{array}{l}2,5x - 3,5y = 0,5\\ - 0,5x + 0,7y = 1\end{array} \right.\);
c) \(\left\{ \begin{array}{l}\frac{x}{5} + \frac{y}{2} = 5\\0,4x + y = 1\end{array} \right.\).
Hệ phương trình \(\left\{ \begin{array}{l}1,5x - 0,6y = 0,3\\ - 2x + y = - 2\end{array} \right.\)
A. có nghiệm là (0; -0,5).
B. có nghiệm là (1; 0).
C. có nghiệm là (-3; -8).
D. vô nghiệm.
Hệ phương trình \(\left\{ \begin{array}{l}0,6x + 0,3y = 1,8\\2x + y = - 6\end{array} \right.\)
A. có một nghiệm.
B. vô nghiệm.
C. có vô số nghiệm.
D. có hai nghiệm.
Với m = 2, hệ phương trình \(\left\{ \begin{array}{l}2mx + 5y = 23\\3x + 3y = 15\end{array} \right.\) có cặp nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\) thỏa mãn biểu thức \(P = \frac{{{x_0}^2 + 4}}{{{y_0} + 5}} + 2024\). Tính giá trị của P.
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{4x - y = 2}\\{x + 3y = 7}\end{array}} \right.\) . Cặp số nào dưới đây là nghiệm của hệ phương trình đã cho?