Cho dãy số \(\left( {{u_n}} \right)\) với:
\(\left\{ \begin{array}{l}{U_1} = \sqrt {2023} \\{U_{n + 1}} = \sqrt {2023 + \sqrt {{U_n}} } \end{array} \right.\,\,;\forall n \in {N^*}\)
Chọn câu trả lời đúng?
-
A.
Dãy số tăng.
-
B.
Dãy số giảm.
-
C.
Dãy số không tăng không giảm.
-
D.
Dãy số vừa tăng vừa giảm.
‒ Sử dụng định nghĩa: Cho dãy số \(\left( {{u_n}} \right)\). Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\).
‒ Sử dụng phương pháp quy nạp toán học:
Bước 1: Kiểm tra rằng mệnh đề đúng với \(n = 1\).
Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì \(n = k \ge 1\) (gọi là giả thiết quy nạp), chứng minh nó cũng đúng với \(n = k + 1\).
Ta sẽ chứng minh \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\).
Với \(n = 1\): \({u_1} = \sqrt {2023} ,{u_2} = \sqrt {2023 + \sqrt {2023} } \)
Ta có \(\sqrt {2023} > 0 \Leftrightarrow 2023 + \sqrt {2023} > 2023 \Leftrightarrow \sqrt {2023 + \sqrt {2023} } > \sqrt {2023} \Leftrightarrow {u_2} > {u_1}\)
Vậy mệnh đề đúng với \(n = 1\).
Giả sử mệnh đề đúng với \(n = k\), tức là \({u_{k + 1}} > {u_k}\). Ta phải chứng minh \({u_{k + 2}} > {u_{k + 1}}\).
Thật vậy, ta có:
\({u_{k + 1}} > {u_k} \Leftrightarrow 2023 + {u_{k + 1}} > 2023 + {u_k} \Leftrightarrow \sqrt {2023 + {u_{k + 1}}} > \sqrt {2023 + {u_k}} \Leftrightarrow {u_{k + 2}} > {u_{k + 1}}\)
Vậy mệnh đề đúng với \(n = k + 1\). Do đó \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Đáp án : A
Các bài tập cùng chuyên đề
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = 2 - 3n\) với \(n \ge 1\). Số hạng đầu \({u_1}\) bằng:
Mệnh đề nào sau đây sai?
Cho dãy số \(\left( {{u_n}} \right)\). Khẳng định nào sau đây đúng?
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 10{u_n} - 9n\end{array} \right.\) với \(n \ge 1\). Ba số hạng đầu của dãy số là:
Cho tổng \({S_n} = 1 + 2 + 3 + .......... + n\). Khi đó \({S_{10}}\) là bao nhiêu?
Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n.\left( {n + 1} \right)}}\) với \(n \in {\mathbb{N}^*}\). Lựa chọn đáp án đúng.
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{{n - 1}}{{2n + 1}}\). Dãy số \(\left( {{u_n}} \right)\) là:
Dãy số nào trong các dãy số sau là dãy số bị chặn?
Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \frac{{3n - 1}}{{3n + 1}}\). Dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi?
Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = {\left( { - 1} \right)^n}\). Chọn khẳng định đúng trong các khẳng định sau đây?
Cho dãy số có các số hạng đầu là: 5; 10; 15; 20; 25; … Số hạng tổng quát của dãy số này là:
Tìm công thức tính số hạng tổng quát \({u_n}\) theo \(n\) của các dãy số sau : \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = {u_n} + 2\end{array} \right.\)
Dãy số \(\left( {{u_n}} \right)\) được xác định bởi công thức \({u_n} = 3 - 2n\) với \(n \in {\mathbb{N}^*}\). Tính tổng \(S = {u_1} + {u_2} + ... + {u_{10}}\).
Cho tổng \(S\left( n \right) = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n\left( {n + 1} \right)}}\). Khi đó công thức của \(S\left( n \right)\) là:
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) biết: \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).
Cho dãy số \(\left( {{u_n}} \right)\) có tổng của \(n\) số hạng đầu cho bởi công thức \({S_n} = {3^n} - 1\). Khẳng định nào sau đây sai?
Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.,\forall n \in {\mathbb{N}^*}\). Tìm số hạng tổng quát \({u_n}\) của dãy số.
Cho dãy số \(\left( {{x_n}} \right)\) thoả mãn điều kiện \({x_1} = 1,{x_{n + 1}} - {x_n} = \frac{1}{{n\left( {n + 1} \right)}},n = 1,2,3,...\) Số hạng \({x_{2023}}\) bằng:
Cho dãy số \(\left( {{u_n}} \right)\) được xác định như sau: \(\left\{ \begin{array}{l}{u_1} = 2,{u_2} = 3\\{u_{n + 2}} = 2{u_{n + 1}} - {u_n}\end{array} \right.\left( {\forall n \in {\mathbb{N}^*},n \ge 2} \right)\). Khi đó tổng \({u_1} + {u_2} + ... + {u_n}\) bằng: