Đề bài

Một bánh xe có $72$ răng. Số đo góc mà bánh xe đã quay được khi di chuyển $10$ răng là:

  • A.

    ${30^0}.$         

  • B.

    ${40^0}.$         

  • C.

    ${50^0}.$

  • D.

    ${60^0}.$

Phương pháp giải

- Tính độ dài \(10\) răng (cung tròn chứa \(10\) răng).

- Sử dụng công thức tính độ dài cung tròn \(l = \alpha R\) để tính số đo góc (đơn vị radian).

- Sử dụng công thức liên hệ giữa độ và radian để tính góc theo đơn vị độ.

Lời giải của GV Loigiaihay.com

$72$răng có chiều dài là \(2\pi R\) nên $10$ răng có chiều dài \(l = \dfrac{{10.2\pi R}}{{72}} = \dfrac{{5\pi }}{{18}}R\)

Theo công thức \(l = R\alpha  \Leftrightarrow \alpha  = \dfrac{l}{R} = \dfrac{{\dfrac{5}{{18}}\pi R}}{R} = \dfrac{5}{{18}}\pi \) mà \(a = \dfrac{{180\alpha }}{\pi } = \dfrac{{180.\dfrac{5}{{18}}\pi }}{\pi } = {50^0}\).

Đáp án : C

Chú ý

Cách khác: $72$ răng tương ứng với \({360^0}\) nên $10$ răng tương ứng với $\dfrac{{10.360}}{{72}} = {50^0}$.