Giải chuyên đề học tập Toán lớp 12 Kết nối tri thức
Bài 3. Vận dụng hệ bất phương trình bậc nhất hai ẩn để ..
Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức>
Một nhà máy hóa chất sản xuất hai hợp chất X và Y. Khi sản xuất một đơn vị hợp chất X sẽ có 2 dm3 khí CO (carbon monoxide) và 6 dm3 khí SO2 (sulfur dioxide) phát tán ra môi trường. Khi sản xuất một đơn vị hợp chất Y sẽ có 4 dm3 khí CO và 3 dm3 khí SO2 phát tán ra môi trường. Các yêu cầu về khí thải chỉ cho phép nhà máy phát thải ra môi trường mỗi tuần không quá 3 000 dm3 khí CO và không quá 5 400 dm3 khí SO2. Nhà máy có thể bán hết tất cả các đơn vị hợp chất X và Y sản xuất ra với giá 36 000 đồn
Đề bài
Một nhà máy hóa chất sản xuất hai hợp chất X và Y. Khi sản xuất một đơn vị hợp chất X sẽ có 2 dm3 khí CO (carbon monoxide) và 6 dm3 khí SO2 (sulfur dioxide) phát tán ra môi trường. Khi sản xuất một đơn vị hợp chất Y sẽ có 4 dm3 khí CO và 3 dm3 khí SO2 phát tán ra môi trường. Các yêu cầu về khí thải chỉ cho phép nhà máy phát thải ra môi trường mỗi tuần không quá 3 000 dm3 khí CO và không quá 5 400 dm3 khí SO2. Nhà máy có thể bán hết tất cả các đơn vị hợp chất X và Y sản xuất ra với giá 36 000 đồng một đơn vị hợp chất X và 24 000 đồng một đơn vị hợp chất Y. Xác định số đơn vị hợp chất X và Y mỗi loại cần sản xuất trong một tuần để thu được lợi nhuận cao nhất mà vẫn đảm bảo các yêu cầu về khí thải môi trường.
Phương pháp giải - Xem chi tiết
F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các điểm cực biên
Lời giải chi tiết
Gọi x và y lần lượt là số đơn vị hợp chất X và Y cần sản xuất.
Lợi nhuận thu được là: F(x; y) = 36 000x + 24 000y (đồng).
Ta có hệ bất phương trình sau:
\(\left\{ \begin{array}{l}x \ge 0,y \ge 0\\2{\rm{x}} + 4y \le 3{\rm{ }}000\\6{\rm{x}} + 3y \le {\rm{5 400}}\end{array} \right.\)
Miền nghiệm của hệ bất phương trình này là miền tứ giác OABC được tô màu như hình vẽ dưới đây:

Các điểm cực biên là: O(0; 0), A(0; 750), B(700; 400), C(900; 0).
Ta có:
F(0; 0) = 36 000.0 + 24 000.0 = 0;
F(0; 750) = 36 000.0 + 24 000.750 = 18 000 000;
F(700; 400) = 36 000.700 + 24 000.400 = 34 800 000;
F(900; 0) = 36 000.900 + 24 000.0 = 32 400 000.
Giá trị lớn nhất của F(x; y) bằng 34 800 tại điểm cực biên B(700; 400).
Vậy cần sản xuất 700 đơn vị hợp chất X và 400 đơn vị hợp chất Y trong một tuần để thu được lợi nhuận cao nhất mà vẫn đảm bảo các yêu cầu về khí thải môi trường.
- Giải bài 2.4 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 2.5 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 2.2 trang 32 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 2.1 trang 32 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải mục 3 trang 29, 30, 31, 32 Chuyên đề học tập Toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 3.24 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.23 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.22 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.21 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.20 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.24 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.23 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.22 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.21 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức
- Giải bài 3.20 trang 70 Chuyên đề học tập Toán 12 - Kết nối tri thức




