Giải bài 1.55 trang 31 SGK Toán 8 - Cùng khám phá>
Một hình lập phương có thể tích là
Đề bài
Một hình lập phương có thể tích là \(8{a^3} + 36{a^2}b + 54a{b^2} + 27{b^3}\) với \(a > 0\), \(b > 0\). Tính độ dài cạnh của hình lập phương theo a,b.
Phương pháp giải - Xem chi tiết
Sử dụng hằng đẳng thức “Lập phương của một tổng” để tính độ dài cạnh của hình lập phương theo a,b.
Lời giải chi tiết
Nếu cạnh hình lập phương là x thì thể tích của nó là \({x^3}\)
Hình lập phương có thể tích là: \(8{a^3} + 36{a^2}b + 54a{b^2} + 27{b^3} = {\left( {2a + 3b} \right)^3}\)
Vậy cạnh của nó là \(2a + 3b\).
- Giải bài 1.56 trang 31 SGK Toán 8 - Cùng khám phá
- Giải bài 1.54 trang 31 SGK Toán 8 - Cùng khám phá
- Giải bài 1.53 trang 31 SGK Toán 8 - Cùng khám phá
- Giải bài 1.52 trang 31 SGK Toán 8 - Cùng khám phá
- Giải bài 1.51 trang 30 SGK Toán 8 - Cùng khám phá
>> Xem thêm