Câu hỏi

Trong mặt phẳng với hệ tọa độ \(Oxy\), lập phương trình đường tròn \((C)\) có tâm \(I\left( {2; - 3} \right)\)và có bán kính \(R = 4\).

  • A \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\). 
  • B \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 4\).
  • C \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 4\).
  • D \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 16\).

Phương pháp giải:

Đường tròn \(\left( C \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = c\) có tâm \(I\left( {a;b} \right)\), bán kính \(R = \sqrt c \)

Lời giải chi tiết:

Phương trình đường tròn \((C)\) có tâm \(I\left( {2; - 3} \right)\) và có bán kính \(R = 4\) là \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 16\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay