Câu hỏi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {{x^2} - 1} \right),\,\forall \,x \in \mathbb{R}.\) Hàm số \(y = 2f\left( { - x} \right)\) đồng biến trên khoảng

  • A \(\left( {2; + \infty } \right)\)
  • B \(\left( { - \infty ; - 1} \right)\)
  • C \(\left( { - 1;1} \right)\)
  • D \(\left( {0;2} \right)\)

Phương pháp giải:

Hàm số \(y = f\left( x \right)\)  đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)

Lời giải chi tiết:

Ta có: \(y' = \left[ { - 2f\left( { - x} \right)} \right]' =  - 2f'\left( { - x} \right)\left( { - x} \right)' = 2f'\left( { - x} \right) \Rightarrow y' = 0 \Leftrightarrow f'\left( { - x} \right) = 0\)

\( \Leftrightarrow {\left( { - x} \right)^2}\left[ {{{\left( { - x} \right)}^2} - 1} \right] = 0 \Leftrightarrow {x^2}\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x =  - 1\end{array} \right..\)

Khi đó ta có bảng xét dấu:

\( \Rightarrow \) Hàm số \(y = 2f\left( { - x} \right)\) đồng biến trên \(\left( { - 1;\,1} \right).\) 

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay