Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {{x^2} - 1} \right),\,\forall \,x \in \mathbb{R}.\) Hàm số \(y = 2f\left( { - x} \right)\) đồng biến trên khoảng
- A \(\left( {2; + \infty } \right)\)
- B \(\left( { - \infty ; - 1} \right)\)
- C \(\left( { - 1;1} \right)\)
- D \(\left( {0;2} \right)\)
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)
Lời giải chi tiết:
Ta có: \(y' = \left[ { - 2f\left( { - x} \right)} \right]' = - 2f'\left( { - x} \right)\left( { - x} \right)' = 2f'\left( { - x} \right) \Rightarrow y' = 0 \Leftrightarrow f'\left( { - x} \right) = 0\)
\( \Leftrightarrow {\left( { - x} \right)^2}\left[ {{{\left( { - x} \right)}^2} - 1} \right] = 0 \Leftrightarrow {x^2}\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right..\)
Khi đó ta có bảng xét dấu:
\( \Rightarrow \) Hàm số \(y = 2f\left( { - x} \right)\) đồng biến trên \(\left( { - 1;\,1} \right).\)
Chọn C.