Câu hỏi
Hệ số góc của tiếp tuyến tại \(A\left( {1;0} \right)\) của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) là:
- A \(1\)
- B \( - 1\)
- C \( - 3\)
- D \(0\)
Phương pháp giải:
Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(k = f'\left( {{x_0}} \right)\).
Lời giải chi tiết:
\(y = {x^3} - 3{x^2} + 2 \Rightarrow y' = 3{x^2} - 6x \Rightarrow y'\left( 1 \right) = - 3\)
Hệ số góc của tiếp tuyến tại \(A\left( {1;0} \right)\) của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) là: \( - 3\).
Chọn: C