Câu hỏi

Cho hình chóp \(S.ABC\)có đáy là \(\Delta ABC\) vuông cân ở \(B,\,\)\(AC = a\sqrt 2 ,\,\)\(SA \bot \left( {ABC} \right),\) \(SA = a.\) Gọi \(G\) là trọng tâm của \(\Delta SBC\), \(mp\left( \alpha  \right)\) đi qua \(AG\) và song song với \(BC\) chia khối chóp thành hai phần. Gọi \(V\)là thể tích của khối đa diện không chứa đỉnh \(S\). Tính \(V.\)

  • A \(\frac{{5{a^3}}}{{54}}.\)
  • B \(\frac{{4{a^3}}}{9}.\)
  • C \(\frac{{2{a^3}}}{9}.\)       
  • D \(\frac{{4{a^3}}}{{27}}.\)

Phương pháp giải:

+) Xác định mặt phẳng đi qua \(AG\) và song song với \(BC\).

+) Sử dụng công thức tỉ lệ thể tích Simpson.

Cho chóp \(S.ABC,\;A' \in SA,\,\,B' \in SB,\,\,C' \in SC.\) Khi đó \(\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\).

Lời giải chi tiết:

Trong \(\left( {SBC} \right)\) qua \(G\) kẻ \(MN//BC\,\,\left( {M \in SB,\,\,N \in SC} \right)\). Khi đó mặt phẳng đi qua \(AG\) và song song với \(BC\) chính là mặt phẳng \(\left( {AMN} \right)\). Mặt phẳng này chia khối chóp thành 2 khối \(S.AMN\) và \(AMNBC\).

Gọi \(H\) là trung điểm của \(BC.\)

Vì \(MN//BC \Rightarrow \) Theo định lí Ta-lét ta có: \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{2}{3}\left( { = \frac{{SG}}{{SH}}} \right)\).

\(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{S.AMN}} = \frac{4}{9}{V_{S.ABC}}\).

Mà \({V_{S.AMN}} + {V_{AMNBC}} = {V_{S.ABC}} \Rightarrow {V_{AMNBC}} = \frac{5}{9}{V_{S.ABC}} = V\).

Ta có \(\Delta ABC\) vuông cân tại \(B \Rightarrow AB = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}{a^2}\).

\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{1}{3}a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{6}\).

Vậy \(V = \frac{5}{9}.\frac{{{a^3}}}{6} = \frac{{5{a^3}}}{{54}}\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay