Câu hỏi
Có bao nhiêu số hạng trong khai triển nhị thức \({\left( {2x - 3} \right)^{2018}}\) thành đa thức
- A \(2019\).
- B \(2020\).
- C \(2018\).
- D \(2017\).
Phương pháp giải:
Sử dụng khai triển nhị thức Newton : \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).
Lời giải chi tiết:
Ta có: \({\left( {2x - 3} \right)^{2018}} = \sum\limits_{k = 0}^{2018} {C_{2018}^k{{\left( {2x} \right)}^k}.{{\left( { - 3} \right)}^{2018 - k}}} \) , do đó khai triển trên có 2019 số hạng.
Chọn A.