Câu hỏi
Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 3”. Tính xác suất \(P\left( A \right)\) của biến cố A.
- A
\(P\left( A \right) = \dfrac{2}{3}\).
- B
\(P\left( A \right) = \dfrac{{124}}{{300}}\).
- C
\(P\left( A \right) = \dfrac{1}{3}\).
- D \(P\left( A \right) = \dfrac{{99}}{{300}}\).
Phương pháp giải:
Xác suất \(P\left( A \right)\) của biến cố A là: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết:
Số phần tử của không gian mẫu: \(n\left( \Omega \right) = 300\)
Số các số tự nhiên nhỏ hơn 300 mà chia hết cho 3 là: \(\dfrac{{297 - 0}}{3} + 1 = 100 \Rightarrow n\left( {\overline A } \right) = 100\)
\( \Rightarrow P\left( {\overline A } \right) = \dfrac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \dfrac{{100}}{{300}} = \dfrac{1}{3} \Rightarrow P\left( A \right) = 1 - \dfrac{1}{3} = \dfrac{2}{3}\).
Chọn: A