Câu hỏi

Khối hộp có 6 mặt đều là các hình thoi cạnh a, các góc nhọn của các mặt đều bằng \({60^0}\) có thể tích là 

  • A \(\dfrac{{{a^3}\sqrt 2 }}{3}\).
  • B \(\dfrac{{{a^3}\sqrt 3 }}{6}\)
  • C \(\dfrac{{{a^3}\sqrt 3 }}{3}\).
  • D \(\dfrac{{{a^3}\sqrt 2 }}{2}\).

Phương pháp giải:

Giả sử các góc ở đỉnh A’ đều bằng \({60^0}\), khi đó tứ diện AA’B’D’ là tứ diện đều, có cạnh bằng a. Tính \({V_{A.A'B'D'}}\).

Sử dụng tỉ lệ thể tích tính \({V_{ABCD.A'B'C'D'}}\).

Lời giải chi tiết:

Giả sử các góc ở đỉnh A’ đều bằng \({60^0}\), khi đó tứ diện AA’B’D’ là tứ diện đều, có cạnh bằng a.

Gọi I là trung điểm của A’D’, G là trọng tâm tam giác đều A’B’D’.

\( \Rightarrow B'I = \dfrac{{a\sqrt 3 }}{2},\,\,\,B'G = \dfrac{2}{3}B'I = \dfrac{{a\sqrt 3 }}{3},\,\,\,\,{S_{A'B'D'}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

\(AG = \sqrt {AB{'^2} - B'{G^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}}  = \sqrt {\dfrac{2}{3}} a\)

\({V_{A.A'B'D'}} = \dfrac{1}{3}AG.{S_{A'B'D'}} = \dfrac{1}{3}.\sqrt {\dfrac{2}{3}} .a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 2 }}{{12}}\)

\({V_{ABCD.A'B'C'D'}} = 2{V_{ABD.A'B'D'}} = 6{V_{A.A'B'D'}} = 6.\dfrac{{{a^3}\sqrt 2 }}{{12}} = \dfrac{{{a^3}\sqrt 2 }}{2}\).

Chọn: D


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay