Câu hỏi
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\). Tính \(b + 2a\).
- A 3
- B 15
- C -15
- D -3
Phương pháp giải:
Hàm số bậc ba đạt cực tiểu tại điểm \(x = {x_0}\).
Lời giải chi tiết:
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + 2\) đạt cực tiểu tại điểm \(x = 1\) và \(f\left( 1 \right) = - 3\)
\( \Leftrightarrow \left\{ \begin{array}{l}3 + 2a + b = 0\\6 + 2a > 0\\1 + a + b + 2 = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a + b = - 3\\a + b = - 6\\a > - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 9\\a > - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - 9\end{array} \right.\) \( \Rightarrow b + 2a = - 9 + 2.3 = - 3\).
Chọn: D