Câu hỏi
Cho hàm số \(y = f\left( x \right) = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {m + 3} \right)x + m - 4\). Tìm để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị?
- A \( - 3 < m < 1\)
- B \(m > 1\)
- C \(m > 4\)
- D \(m > 0\)
Phương pháp giải:
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) nhận đượcbằng cách như sau :
+) Vẽ đồ thị hàm số \(y = f\left( x \right)\).
+) Xóa phần đồ thì hàm số \(y = f\left( x \right)\) bên trái trục Oy.
+) Lấy đối xứng toàn bộ phần đồ thị hàm số \(y = f\left( x \right)\) bên phải trục Oy qua Oy.
Lời giải chi tiết:
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) nhận đượcbằng cách như sau :
+) Vẽ đồ thị hàm số \(y = f\left( x \right)\).
+) Xóa phần đồ thì hàm số \(y = f\left( x \right)\) bên trái trục Oy.
+) Lấy đối xứng toàn bộ phần đồ thị hàm số \(y = f\left( x \right)\) bên phải trục Oy qua Oy.
Do đó hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị thì hàm số \(y = f\left( x \right)\) phải có 2 điểm cực trị phân biệt có hoành độ dương \( \Leftrightarrow \) phương trình \(f'\left( x \right) = 0\) có 2 nghiệm dương phân biệt.
Xét phương trình \(f'\left( x \right) = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x + m + 3 = 0\) có 2 nghiệm dương phân biệt
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {\left( {m + 1} \right)^2} - \left( {m + 3} \right) > 0\\S = 2\left( {m + 1} \right) > 0\\P = m + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 2 > 0\\m > - 1\\m > - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < - 2\end{array} \right.\\m > - 1\end{array} \right. \Leftrightarrow m > 1\).
Chọn B.