Câu hỏi
Cho hàm số \(f\left( x \right)\) có đạo hàm trên R và có đồ thi \(y = f\left( x \right)\) như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào sau đây sai?
 
- A Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( {0;2} \right)\).
 - B Hàm số \(g\left( x \right)\) đồng biến trên \(\left( {2; + \infty } \right)\).
 - C Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 2} \right)\).
 - D Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right)\).
 
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;b} \right)\) khi và chỉ khi \(f'\left( x \right) \ge 0\,\,\forall x \in \left( {a;b} \right)\) và bằng 0 tại hữu hạn điểm.
Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {a;b} \right)\) khi và chỉ khi \(f'\left( x \right) \le 0\,\,\forall x \in \left( {a;b} \right)\) và bằng 0 tại hữu hạn điểm.
Lời giải chi tiết:
Xét trên khoảng \(\left( {2; + \infty } \right)\) ta có :
\(x \in \left( {2; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{x^2} - 2 \in \left( {2; + \infty } \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x > 0\\f'\left( {{x^2} - 2} \right) > 0\end{array} \right. \Leftrightarrow g'\left( x \right) > - 0 \Rightarrow \) Hàm số đồng biến trên \(\left( {2; + \infty } \right)\). Vậy đáp án B đúng.
Xét trên khoảng \(\left( { - \infty ; - 2} \right)\) ta có :
\(x \in \left( { - \infty ; - 2} \right) \Rightarrow \left\{ \begin{array}{l}x < 0\\{x^2} - 2 \in \left( {2; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 0\\f'\left( {{x^2} - 2} \right) > 0\end{array} \right. \Rightarrow g'\left( x \right) < 0 \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \infty ; - 2} \right)\). Vậy đáp án C đúng.
Xét trên khoảng \(\left( {-1;0} \right)\) ta có :
\(x \in \left( { - 1;0} \right) \Rightarrow \left\{ \matrix{x < 0 \hfill \cr 
 {x^2} - 2 \in \left( { - 2; - 1} \right) \hfill \cr} \right. \Leftrightarrow\left\{ \matrix{x < 0 \hfill \cr f'\left( {{x^2} - 2} \right) > 0 \hfill \cr} \right. \Leftrightarrow g'\left( x \right) < 0 \Rightarrow \) Hàm số nghịch biến trên \(\left( {-1;0} \right)\). Vậy đáp án D đúng.
Chọn A.
                
                                    

