Câu hỏi

Số các số hạng trong khai triển \({\left( {3x - 4} \right)^9}\) là :

  • A 9
  • B 10
  • C 12
  • D 11

Phương pháp giải:

Sử dụng khai triển nhị thức Newton : \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Lời giải chi tiết:

Ta có :

\({\left( {3x - 4} \right)^9} = \sum\limits_{k = 0}^9 {C_9^k{{\left( {3x} \right)}^k}.{{\left( { - 4} \right)}^{9 - k}}}  = \sum\limits_{k = 0}^9 {C_9^k{3^k}.{{\left( { - 4} \right)}^{9 - k}}.{x^k}} \).

Do \(0 \le k \le 9;\,\,k \in Z \Rightarrow \) Khai triển trên có 10 số hạng.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay